用户名: 密码: 验证码:
激光冲击强化TC17叶片前缘模拟件的抗FOD性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:FOD Resistance of the Simulator Samples of TC17 Blades Leading Edges with Laser Shock Processing
  • 作者:吴俊峰 ; 邹世坤 ; 张永康 ; 孙桂芳 ; 倪中华 ; 车志刚 ; 曹子文
  • 英文作者:Wu Junfeng;Zou Shikun;Zhang Yongkang;Sun Guifang;Ni Zhonghua;Che Zhigang;Cao Ziwen;Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments,Southeast University;Science and Technology on Power Beam Processes Laboratory,AVIC Manufacturing Technology Institute;Guangdong University of Technology;
  • 关键词:激光冲击强化 ; TC17合金 ; 抗FOD性能 ; 残余应力 ; 纳米晶
  • 英文关键词:laser shock processing;;TC17 alloy;;FOD resistance;;residual stress;;nanocrystallite
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:东南大学江苏省微纳生物医疗器械设计与制造重点实验室;中国航空制造技术研究院高能束流加工技术重点实验室;广东工业大学;
  • 出版日期:2018-11-15
  • 出版单位:稀有金属材料与工程
  • 年:2018
  • 期:v.47;No.388
  • 基金:国家科技重大专项(2016YFB1102705);; 装备预研教育部联合基金(6141A02033103);; 国家博士后基金(2015M570395,2016T90400);; 江苏省产学研前瞻性研究项目(BY2015070-05);; 江苏省博士后基金(1501028A);; 江苏省六大人才高峰高层次人才项目(2016-HKHT-001)
  • 语种:中文;
  • 页:COSE201811017
  • 页数:6
  • CN:11
  • ISSN:61-1154/TG
  • 分类号:113-118
摘要
为研究激光冲击强化(LSP)叶片前缘抗外物损伤(FOD)性能,设计截面尺寸近似叶片前缘的缺口模拟件。采用YAG激光器(30 J和15 ns)和方形光斑(4 mm×4 mm)对TC17模拟件的缺口尖端进行双面LSP。采用X射线衍射仪、透射电镜、高频疲劳试验机和扫描电镜分别对LSP前后的残余应力、微观组织、疲劳性能和疲劳断口进行测试分析。结果表明,与未强化缺口模拟件相比,LSP-TC17合金的表面残余压应力最大值为-403MPa。LSP-TC17合金表面形成高密度位错、孪晶和纳米晶。LSP-TC17缺口模拟件的疲劳强度提高55.6%。TC17缺口模拟件的疲劳强化机理为高幅残余压应力和表面纳米晶。研究结果为LSP-FOD叶片奠定理论基础并提供工艺参考。
        Notched fatigue samples were designed to approximate a typical leading edge of the blade with foreign object damage(FOD) in order to study the anti-fatigue performance of FOD-blades with laser shock processing(LSP).The surface at the crack tip of the notches of TC17 fatigue samples was LSPed with double sides.A YAG laser system was used with laser energy of 30 J,pulse width of 15 ns and square spot of 4 mm×4 mm.The residual stress,microstructure,fatigue performance and fatigue fracture of samples with and without LSP were measured and analyzed by X-ray diffractometer,Transmission Electron Microscope(TEM),high-frequency fatigue tester and Scanning Electron Microscope(SEM).The results show that compared with the notched fatigue samples without LSP,the maximum surface residual stresses of LSP-TC17 alloy is –403 MPa.High density dislocation,twin and nanocrystallite are formed in the surface.The fatigue strength of LSP-TC17 notched fatigue samples increases by 55.6%.Fatigue strengthening mechanism of TC17 notched fatigue samples is high amplitude compressive residual stress and surface nanocrystalline.The experiment results lay the theoretical foundation and provide the technological reference for LSP-FOD blades.
引文
[1]Luo J,Li L,Li M Q.Materials Science and Engineering A[J],2014,606:165
    [2]Marandi S M,Rahmani K,Tajdari M.Aerospace Science and Technology[J],2014,33(1):65
    [3]Li Donglin(李东霖),He Weifeng(何卫锋),You Xi(游熙)et al.Chinese Journal of Lasers(中国激光)[J],2016(7):122
    [4]Frankel P G,Withers P J,Preuss M et al.Mechanics of Materials[J],2012,55:130
    [5]Ruschau J J,John R,Thompson S R et al.International Journal of Fatigue[J],1999,21(1):S199
    [6]Nicholas T,Barber J P,Bertke R S.Experimental Mechanics[J],1980,20(10):357
    [7]Nowell D,DuóP,Stewart I F.International Journal of Fatigue[J],2003,25(9-11):963
    [8]Ding J,Hall R F,Byrne J et al.International Journal of Fatigue[J],2007,29(7):1339
    [9]Hall R,Byrne J,Zhao T et al.Fatigue&Fracture of Engineering Materials&Structures[J],2008,31(5):386
    [10]Spanrad S,Tong J.Materials Science and Engineering A[J],2011,528:2128
    [11]Nie X,He W,Zhou L et al.Materials Science and Engineering A[J],2014,594:161
    [12]Zabeen S,Preuss M,Withers P J.Acta Materialia[J],2015,83:216
    [13]Lin B,Lupton C,Spanrad S et al.International Journal of Fatigue[J],2014,59:23
    [14]Zhang Y K,Lu J Z,Ren X D et al.Materials&Design[J],2009,30(5):1697
    [15]Gao Yukui(高玉魁).Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2016,43(9):2347
    [16]Maawad E,Sano Y,Wagner L et al.Materials Science and Engineering A[J],2012,536:82
    [17]Correa C,Ruiz De Lara L,Díaz M et al.International Journal of Fatigue[J],2015,70:196
    [18]Ren X D,Zhan Q B,Yang H M et al.Materials&Design[J],2013,44:149
    [19]Chu J P,Rigsbee J M,Bana?G et al.Metallurgical and Materials Transactions A[J],1995,26(6):1507
    [20]See D W,Dulaney J L,Clauer A H et al.Surface Engineering[J],2002,18(1):32
    [21]Li Yinghong(李应红),He Weifeng(何卫锋),Zhou Liucheng(周留成).Scientia Sinica Techological(中国科学:技术科学)[J],2015(1):1
    [22]Zou Shikun(邹世坤),Guo Enming(郭恩明),Li Bin(李斌).Chinese Journal of Lasers(中国激光)[J],2011,38(6):76
    [23]Pook L P.Metal Fatigue[M].Oxford:Clarendon Press,1974
    [24]Nie X,He W,Zang S et al.Surface and Coatings Technology[J],2014,253:68
    [25]Forman R G,Kearney V E,Engle R M.Sen-ito Kogyo[J],1993,49(3):459
    [26]Lu J Z,Luo K Y,Zhang Y K et al.Acta Materialia[J],2010,58(16):5354
    [27]Padiua H A,Boyce B L.Experimental Mechanics[J],2010,50(1):5
    [28]Qin C,Zhang X,Ye S et al.Engineering Fracture Mechanics[J],2015,142:140
    [29]Peters J O,Lütjering G.Metallurgical and Materials Transactions A[J],2001,32(11):2805
    [30]Zheng Xiulin(郑修麟).Material Fatigue Theory and Engineering Application(材料疲劳理论与工程应用)[M].Beijing:Science Press,2013.
    [31]Zhou J Z,Huang S,Sheng J et al.Materials Science and Engineering A[J],2012,539:360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700