疟疾媒介中华按蚊触角感器的扫描电镜观察
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Observation of antennal sensilla of the malaria vector Anopheles sinensis (Diptera: Culicidae) under scanning electron microscope
  • 作者:张静 ; 张晶晶 ; 史宗畔 ; 闫振天 ; 陈斌 ; 何正波
  • 英文作者:ZHANG Jing;ZHANG Jing-Jing;SHI Zong-Pan;YAN Zhen-Tian;CHEN Bin;HE Zheng-Bo;Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University;
  • 关键词:中华按蚊 ; 触角 ; 形态 ; 感器 ; 超微结构 ; 扫描电镜
  • 英文关键词:Anopheles sinensis;;antenna;;morphology;;sensilla;;ultrastructure;;scanning electron microscopy
  • 中文刊名:KCXB
  • 英文刊名:Acta Entomologica Sinica
  • 机构:重庆师范大学昆虫与分子生物学研究所媒介昆虫重庆市重点实验室;
  • 出版日期:2019-03-20
  • 出版单位:昆虫学报
  • 年:2019
  • 期:v.62
  • 基金:国家自然科学基金项目(31572332);; 重庆市优秀人才支持计划
  • 语种:中文;
  • 页:KCXB201903005
  • 页数:11
  • CN:03
  • ISSN:11-1832/Q
  • 分类号:40-50
摘要
【目的】明确中华按蚊Anopheles sinensis雌成虫与幼虫触角感器的类型、形态和分布。【方法】利用光学显微镜观察中华按蚊成虫与幼虫触角的形态结构,利用扫描电镜观察触角上的感器类型、形态和分布。【结果】中华按蚊雌成虫触角由柄节、梗节和鞭节组成,鞭节有13个亚节。触角上共发现4种类型的感器,分别为毛形感器(锐型和钝型)、刺形感器(大型和小型)、锥形感器(Ⅰ型和Ⅱ型)和腔锥形感器(大型和小型)。雌成虫触角各类感器总计约1 135.67±86.75个,其中毛形感器数量最多(662.00±6.22个),随后是刺形感器(294.67±33.35个)和锥形感器(146.00±42.39个),腔锥形感器数量最少(36.50±5.90个)。毛形感器、刺形感器和锥形感器在鞭节的每个亚节均有分布,而大型腔锥形感器在第9-11亚节没有分布,小型腔锥形感器仅分布于第13节的顶端。幼虫触角的鞭节不分亚节,呈管状,触角末端有一个感觉锥,鞭节上分布有与成虫锥形感器相似的锥形凸起,初步定名为类锥形感器,其数量和大小随幼虫龄期的增长而显著增加,锥体表面的凹槽越来越明显,其功能还需要通过超微结构和电生理等研究进一步确定。【结论】本研究对中华按蚊幼虫和雌成虫触角感器的形态特征、类型、数量及其分布进行了观察和分析,结果为进一步研究中华按蚊感器的生理功能奠定了基础。
        【Aim】 To determine the type, morphology and distribution of antennal sensilla of female adults and larvae of Anopheles sinensis. 【Methods】 The morphological structure of the antennae of female adults and larvae of An. sinensis were observed under optical microscope, and the types, morphology and distribution of sensilla were observed under scanning electron microscope. 【Results】 The female antennae of An. sinensis adults are comprised of basal scape, pedicel, and a long flagellum with 13 flagellomeres. Four types of sensilla, including sensilla trichodea(sharp-and blunt-tipped), sensilla chaetica(large and small), sensilla basiconica or grooved pegs(types I and II) and sensilla coeloconica(large and small), were found on the female antennae of adults. Averagely the flagellum is covered with 1 135.67±86.75 sensilla. Among them, sensilla trichodea are the most numerous sensilla type found on the flagellum(662.00±6.22), followed by sensilla chaetica(294.67±33.35), sensilla basiconica(146.00±42.39) and sensilla coeloconica(36.50±5.90). Sensilla trichodea, sensilla chaetica and sensilla basiconica are distributed on each flagellomere, while the large sensilla coeloconica were not found on the 9 th-11 th flagellomeres, and the small sensilla coeloconica were only found on the distal tip of flagellomere 13. There is only one tubular flagellomere on larval antennae with a terminal sensory cone. Many pegs similar to the sensilla basiconica of female adults were found on the tubular flagellum, which were tentatively named as sensilla basiconica-like. Their numbers and sizes dramatically increase with the larval instar, and the grooves along the surfaces gradually become obvious, but their functions need to be further determined through ultrastructural and electrophysiological analysis. 【Conclusion】 In this study the morphological characteristics, type, number and distribution of antennal sensilla of An. sinensis larvae and female adults were observed and analyzed. The results provide a basis for further investigating the physiological functions of the sensilla of An. sinensis.
引文
Attardo GM, Hansen IA, Raikhel AS, 2005. Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect Biochem. Molec. Biol., 35(7): 661-675.
    Bartlet E, Romani R, Williams IH, Isidoro N, 1999. Functional anatomy of sensory structures on the antennae of Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae). Int. J. Insect Morphol., 28(4): 291-300.
    Bonizzoni M, Gasperi G, Chen X, James AA, 2013. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol., 29(9): 460-468.
    Boo KS, 1980. Fine structure of the antennal sensory hairs in female Anopheles stephensi. Z. Parasitenkd., 61(2): 161-171.
    Chadee DD, Corbet PS, 1993. The gonotrophic status and diel pattern of entry to outdoor oviposition sites of female Aedes aegypti (L.)(Diptera: Culicidae). Ann. Trop. Med. Parasitol., 87(3): 263-268.
    Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R, 2013. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit. Vectors, 6(1): 280.
    Chen B, Zhang YJ, He ZB, Li WS, Si FL, Tang Y, He QY, Qiao L, Yan ZT, Fu WB, Che YF, 2014. De novo transcriptome sequencing and sequence analysis of the malaria vector Anopheles sinensis (Diptera: Culicidae). Parasit. Vectors, 7: 314.
    Cui F, Raymond M, Qiao C, 2006. Insecticide resistance in vector mosquitoes in China. Pest Manag. Sci., 62(11): 1013-1022.
    Davis EE, Sokolove PG, 1976. Lactic acid-sensitive receptors on the antennae of the mosquito, Aedes aegypti. J. Comp. Physiol., 105: 43-54.
    Dong WX, Zhang ZN, 2006. Antennal sensilla of Microplitis mediator observed with scanning electron microscope. Acta Entomol. Sin., 49(6): 1054-1059. [董文霞, 张钟宁, 2006. 中红侧沟茧蜂触角感受器的扫描电镜观察. 昆虫学报, 49(6): 1054-1059]
    Du ZL, 1989. Scanning electron microscopic studies of sensilla on the antenna of worker honey bee Apis cerana. Acta Entomol. Sin., 32(2): 166-169. [杜芝兰, 1989. 中华蜜蜂工蜂触角感受器的扫描电镜观察. 昆虫学报, 32(2): 166-169]
    Elizondo-Quiroga A, Flores-Suarez A, Elizondo-Quiroga D, Ponce-Garcia G, Blitvich BJ, Contreras-Cordero JF, Gonzalez-Rojas JI, Mercado-Hernandez R, Beaty BJ, Fernandez-Salas I, 2006. Host-feeding preference of Culex quinquefasciatus in Monterrey, northeastern Mexico. J. Am. Mosq. Control Assoc., 22(4): 654-661.
    Feng X, Yang C, Yang Y, Li J, Lin K, Li M, Qiu X, 2015. Distribution and frequency of G119S mutation in ace-1 gene within Anopheles sinensis populations from Guangxi, China. Malar. J., 14: 470.
    Foley DH, Klein TA, Lee IY, Kim MS, Wilkerson RC, Harrison G, Rueda LM, Kim HC, 2011. Mosquito species composition and Plasmodium vivax infection rates on Baengnyeong-do (island), Republic of Korea. Korean J. Parasitol., 49(3): 313-316.
    Gao AP, Zhuge HX, 2003. Scanning electron microscopy of antennal sensilla of the Aedes albopictus. J. Med. Pest Control, 19(11): 653-656. [高安平, 诸葛洪祥, 2003. 白纹伊蚊触角感器的扫描电镜观察. 医学动物防制, 19(11): 653-656]
    Hawkes FM, Dabiré RK, Sawadogo SP, Torr SJ, Gibson G, 2017. Exploiting Anopheles responses to thermal, odour and visual stimuli to improve surveillance and control of malaria. Sci. Rep., 7(1): 17283.
    Hempolchom C, Yasanga T, Wijit A, Taai K, Dedkhad W, Srisuka W, Thongsahuan S, Otsuka Y, Takaoka H, Saeung A, 2017. Scanning electron microscopy of antennal sensilla of the eight Anopheles species of the Hyrcanus Group (Diptera: Culicidae) in Thailand. Parasitol. Res., 116(1): 143-153.
    Hill SR, Hansson BS, Ignell R, 2009. Characterization of antennal trichoid sensilla from female southern house mosquito, Culex quinquefasciatus Say. Chem. Senses, 34(3): 231-252.
    Huang XJ, Xue RD, 1990. Morphology and function of antennal sensilla of mosquitoes (Diptera: Culicidae). Chin. J. Vector Biol. Control, 1(6): 386-387. [黄学军, 薛瑞德, 1990. 蚊虫触角感器的形态与功能. 中国媒介生物学及控制杂志, 1(6): 386-387]
    Kang S, Jung J, Lee S, Hwang H, Kim W, 2012. The polymorphism and the geographical distribution of the knockdown resistance (kdr) of Anopheles sinensis in the Republic of Korea. Malar. J., 11: 151.
    Kwon HW, Lu T, Rutzler M, Zwiebel LJ, 2006. Olfactory responses in a gustatory organ of the malaria vector mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA, 103(36): 13526-13531.
    Li D, Xu SE, Jin LQ, 2010. Scanning electron microscopy observation on Aedes albopictus, Culex quinquefasciatus, Anopheles sinensis and Culex barraudi. J. Shantou Univ. Med. Coll., 23(2): 75-77. [李旦, 许世锷, 金立群, 2010. 白纹伊蚊、致倦库蚊、中华按蚊与五指库蚊扫描电镜观察. 汕头大学医学院学报, 23(2): 75-77]
    Liu XB, Liu QY, Guo YH, Jiang JY, Ren DS, Zhou GC, Zheng CJ, Zhang Y, Liu JL, Li ZF, Chen Y, Li HS, Morton LC, Li HZ, Li Q, Gu WD, 2011. The abundance and host-seeking behavior of culicine species (Diptera: Culicidae) and Anopheles sinensis in Yongcheng city, People’s Republic of China. Parasit. Vectors, 4: 221.
    Long XZ, Gao Y, Zeng XR, Wei DW, Zeng T, Yu YH, 2013. Antennal morphology and sensilla of Aenasius bambawalei (Hymenoptera: Encyrtidae) observed with scanning electron microscope. J. Environ. Entomol., 35(3): 354-361. [龙秀珍, 高燕, 曾宪儒, 韦德卫, 曾涛, 于永浩, 2013. 班氏跳小蜂触角及其上感器的扫描电镜观察. 环境昆虫学报, 35(3): 354-361]
    Lu T, Qiu YT, Wang G, Kwon JY, Rutzler M, Kwon HW, Pitts RJ, van Loon JJ, Takken W, Carlson JR, Zwiebel LJ, 2007. Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr. Biol., 17(18): 1533-1544.
    Ma RY, Du JW, 2000. Antennal sensilla of insects. Entomol. Knowl., 37(3): 179-183. [马瑞燕, 杜家纬, 2000. 昆虫的触角感器. 昆虫知识, 37(3): 179-183]
    Mah B, Meijerink J, Takken W, 2001. The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and L-lactic acid, in an olfactometer. Physiol. Entomol., 26(2): 142-148.
    McIver SB, 1970. Comparative study of antennal sense organs of female culicine mosquitoes. Can. Entomol., 102(10): 1258-1267.
    McIver SB, 1972. Fine structure of the sensilla chaetica on the antennae of Aedes aegypti (Diptera: Culicidae). Ann. Entomol. Soc. Am., 65(6): 1390-1397.
    McIver SB, 1978. Structure of sensilla trichodea of female Aedes aegypti with comments on innervation of antennal sensilla. J. Insect Physiol., 24(5): 383-390.
    McIver SB, 1982. Sensilla of mosquitoes (Diptera: Culicidae). J. Med. Entomol., 19(5): 489-535.
    Nakanishi A, Nishino H, Watanabe H, Yokohari F, Nishikawa M, 2009. Sex-specific antennal sensory system in the ant Camponotus
    japonicus: structure and distribution of sensilla on the flagellum. Cell Tissue Res., 338(1): 79-97.
    Nicastro D, Melzer R, Hruschka H, Smola U, 1998. Evolution of small sense organs: sensilla on the larval antennae traced back to the origin of the Diptera. Naturwissenschaften, 85(10): 501-505.
    Omer SM, Gillies MT, 1971. Loss of response to carbon dioxide in palpectomized female mosquitoes. Entomol. Exp. Appl., 14: 251-252.
    Pan JY, Zhou SS, Zheng X, Huang F, Wang DQ, Shen YZ, Su YP, Zhou GC, Liu F, Jiang JJ, 2012. Vector capacity of Anopheles sinensis in malaria outbreak areas of central China. Parasit. Vectors, 5: 136.
    Pitts RJ, Fox AN, Zwiebel LJ, 2004. A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. USA, 101(14): 5058-5063.
    Pitts RJ, Zwiebel LJ, 2006. Antennal sensilla of two female anopheline sibling species with differing host ranges. Malar J., 5: 26.
    Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR, 2013. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar. J., 12: 56.
    Schultze A, Pregitzer P, Walter MF, Woods DF, Marinotti O, Breer H, Krieger J, 2013. The co-expression pattern of odorant binding proteins and olfactory receptors identify distinct trichoid sensilla on the antenna of the malaria mosquito Anopheles gambiae. PLoS ONE, 8(7): e69412.
    Seenivasagan T, Sharma KR, Shrivastava A, Parashar BD, Pant SC, Prakash S, 2009. Surface morphology and morphometric analysis of sensilla of Asian tiger mosquito, Aedes albopictus (Skuse): an SEM investigation. J. Vector Borne Dis., 46(2): 125-135.
    Shen HH, 2017. How do mosquitoes smell us? The answers could help eradicate disease. Proc. Natl. Acad. Sci. USA, 114(9): 2096-2098.
    Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, Gething PW, Elyazar IR, Kabaria CW, Harbach RE, Hay SI, 2011. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic precis. Parasit. Vectors, 4(1): 89.
    Stocker RF, 1994. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res., 275(1): 3-26.
    Sun DW, Wang GZ, Zeng LH, Li SG, He CH, Hu XM, Wang SQ, 2017. Extensive resistance of Anopheles sinensis to insecticides in malaria-endemic areas of Hainan Province, China. Am. J. Trop. Med. Hyg., 97(1): 295-298.
    Sutcliffe JF, 1994. Sensory bases of attractancy: morphology of mosquito olfactory sensilla-a review. J. Am. Mosq. Control Assoc., 10(2 Pt 2): 309-315.
    Taai K, Harbach RE, Aupalee K, Srisuka W, Yasanga T, Otsuka Y, Saeung A, 2017. An effective method for the identification and separation of Anopheles minimus, the primary malaria vector in Thailand, and its sister species Anopheles harrisoni, with a comparison of their mating behaviors. Parasit. Vectors, 10(1): 97.
    Takken W, Knols BG, 1999. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu. Rev. Entomol., 44: 131-157.
    Takken W, Verhulst NO, 2013. Host preferences of blood-feeding mosquitoes. Annu. Rev. Entomol., 58: 433-453.
    Tauxe GM, MacWilliam D, Boyle SM, Guda T, Ray A, 2013. Targeting a dual detector of skin and CO2 to modify mosquito host seeking. Cell, 155(6): 1365-1379.
    Wei M, Su L, 2017. Observation of antennae and its sensilla of two gall midges in flowers of Illicium verum with scanning electron microscope. Guangxi Plant Prot., 30(2): 1-8. [韦幂, 苏丽, 2017. 2种传粉八角瘿蚊成虫触角及其感受器的扫描电镜观察. 广西植保, 30(2): 1-8]
    WHO, 2012. Global Plan for Insecticide Resistance Management in Malaria Vector. World Health Organization, Geneva.
    WHO, 2017. World Malaria Report 2017. World Health Organization, Geneva.
    Xia Y, Wang G, Buscariollo D, Pitts RJ, Wenger H, Zwiebel LJ, 2008. The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae. Proc. Natl. Acad. Sci. USA, 105(17): 6433-6438.
    Xu JJ, Zhao ML, Ma JX, 1981. Comparative studies on the scanning electron micrographs of Anopheles sinensis Wied. and Anopheles lesteri anthropophagus. Entomotaxonomia, 3(4): 265-272. [许锦江, 赵美銮, 马金鑫, 1981. 中华按蚊和雷氏按蚊嗜人亚种扫描电镜的比较观察. 昆虫分类学报, 3(4): 265-272]
    Yan FM, 2011. Chemical Ecology. 2nd ed. Science Press, Beijing. 21-31. [闫凤鸣, 2011. 化学生态学(第2版). 北京: 科学出版社. 21-31]
    Yang C, Feng X, Huang Z, Li M, Qiu X, 2016. Diversity and frequency of kdr mutations within Anopheles sinensis populations from Guangxi, China. Malar. J., 15(1): 411.
    Yang C, Huang Z, Li M, Feng X, Qiu X, 2017. RDL mutations predict multiple insecticide resistance in Anopheles sinensis in Guangxi, China. Malar. J., 16(1): 482.
    Zacharuk RY, Yin LR, Blue SG, 1971. Fine structure of the antenna and its sensory cone in larvae of Aedes aegypti (L.). J. Morphol., 135(3): 273-297.
    Zhong D, Chang X, Zhou G, He Z, Fu F, Yan Z, Zhu G, Xu T, Bonizzoni M, Wang MH, Cui L, Zheng B, Chen B, Yan G, 2013. Relationship between knockdown resistance, metabolic detoxification and organismal resistance to pyrethroids in Anopheles sinensis. PLoS ONE, 8(2): e55475.
    Zhou D, Zhang D, Ding G, Shi L, Hou Q, Ye Y, Xu Y, Zhou H, Xiong C, Li S, Yu J, Hong S, Yu X, Zou P, Chen C, Chang X, Wang W, Lv Y, Sun Y, Ma L, Shen B, Zhu C, 2014. Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites. BMC Genomics, 15(1): 42.
    Zhou SS, Huang F, Wang JJ, Zhang SS, Su YP, Tang LH, 2010. Geographical, meteorological and vectorial factors related to malaria re-emergence in Huang-Huai River of central China. Malar. J., 9(1): 337.
    Zhu G, Xia H, Zhou H, Li J, Lu F, Liu Y, Cao J, Gao Q, Sattabongkot J, 2013. Susceptibility of Anopheles sinensis to Plasmodium vivax in malarial outbreak areas of central China. Parasit. Vectors, 6(1): 176.
    Zwiebel LJ,Takken W,2004. Olfactory regulation of mosquito-host interactions. Insect Biochem. Molec. Biol.,34(7):645-652.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700