用户名: 密码: 验证码:
月球采矿中月壤/岩力学问题的理论与试验方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical and experimental methods for lunar regolith/rock related mechanical issues in lunar minerals mining
  • 作者:周国庆 ; 李瑞林 ; 严康 ; 赵晓东 ; 陈君 ; 莫品强 ; 王广
  • 英文作者:ZHOU Guoqing;LI Ruilin;YAN Kang;ZHAO Xiaodong;CHEN Jun;MO Pinqiang;WANG Guang;State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology;School of Mechanics and Civil Engineering,China University of Mining and Technology;Sun Yueqi Honors College,China University of Mining and Technology;
  • 关键词:月球采矿 ; 小重力场 ; 高真空度 ; 极端温度 ; 月壤 ; 月岩 ; 力学特性
  • 英文关键词:lunar mining;;low gravitational field;;ultra-high vacuum;;extreme temperature;;lunar regolith;;lunar rock;;mechanical behaviour
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学深部岩土力学与地下工程国家重点实验室;中国矿业大学力学与土木工程学院;中国矿业大学孙越崎学院;
  • 出版日期:2019-01-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.292
  • 基金:国家自然科学基金资助项目(41772338);; 国家高等学校学科创新引智计划资助项目(B14021);; 国家重点实验室自主研究课题资助项目(SKLGDUEZ1303)
  • 语种:中文;
  • 页:MTXB201901018
  • 页数:9
  • CN:01
  • ISSN:11-2190/TD
  • 分类号:190-198
摘要
月球上蕴含丰富的钛、钍、铀、氦等矿产资源以及三斜铁辉石、锆石等地球上未发现的新矿物,月球矿产资源开发利用可有效解决地球资源枯竭及环境破坏等全球性问题,已成为新一轮全球范围太空开发竞争的焦点。然而,月球表面独特的重力、真空及温度等环境和月球地质体特殊的组分、结构及几何特征造就了月壤/月岩特殊的力学特性和工程行为,给未来月球采矿和月球基地建设带来了前所未有的巨大挑战。空间环境方面,月球重力场仅为地球的1/6,月面真空度高达1. 01×10-12kPa,温度最高130℃、最低-183℃,温差高达313℃。月球地质体几何特征方面,月壤颗粒呈现出多孔、多勾角的异型结构;结构特征方面,月壤呈现出粒径跨度大且夹杂月岩大颗粒的典型壤/岩混合体特征;组分方面,月壤及月岩富钛、富铁特征十分典型。因此,获得月球低重力引起的低应力水平和低应力梯度条件、月表超高真空和极端温度等特殊环境条件下月壤/月岩的力学行为,以及异形月壤颗粒形状引起的力学响应、月岩特殊组分及组构相关的力学特征等基础力学问题的系统研究成果,是实现月球矿产资源安全、高效开发的前提和基础。为此,需要对理论及试验研究方法进行创新,弥补现有研究方法和手段无法满足该领域研究需求的短板。理论手段方面,应该建立考虑应力梯度的月球地质体高阶力学方法,实现月壤/岩力学行为对低应力梯度响应的表征;实现月壤特殊颗粒形状的数学表征及数值重构,为揭示月壤复杂颗粒形状特征及其对力学特性的影响奠定基础;构建考虑复杂颗粒形状的月壤多尺度力学方法,实现月壤"细观颗粒形状-宏观力学行为"的跨尺度关联。试验手段方面,需要在地面构造与月面相似的空间环境并研制与月壤/月岩相似的试验材料,为在地球环境研究月球采矿基础力学问题构建试验平台。
        The moon possesses rich mineral resources,for example,titanium,thorium,uranium and thorium,as well assome rare minerals such as pyroxferroite and zircon that do not exist on the earth. The exploitation and utilization of those resources can effectively solve the current global issues of resource depletion and environmental damage,which has become the focus of the new round of global space exploitation competition. However,the special gravity,vacuum and temperature environment on the moon,together with the distinctive composition,structure and geometric characteristics of geological materials result in the individual mechanical behaviour and engineering response of lunar regolith and rock,which bring a series of unprecedented challenges on both lunar mining and base construction. In terms of space environment,the gravity on the moon is only 1/6 of that on the earth,the vacuum on the lunar surface exceeds1. 01×10-12 kPa,the highest temperature is up to 130 ℃,the lowest is-183 ℃,and the temperature difference is as high as 313 ℃.As for the lunar geological materials,the particle shape of lunar regolith processes typical porous and multi-hook geometric characteristic.The lunar regolith also has a very large particle size variation,and exhibits a typical regolith/rock mixed structure characteristic because of the existing of large lunar rock bulk.Both the lunar regolith and rock demonstrate significant titanium-rich and iron-rich composition characteristics. Therefore,the systematic understanding of the above factors induced mechanical behaviours of lunar regolith and rock is the premise for the safe and efficient lunar mining. Those mechanical issues include the behaviour of lunar regolith/rock under lunar gravity induced low stress level and low stress gradient,the behaviour of lunar regolith/rock under lunar ultra-high vacuum and extreme temperature environments,the behaviour of lunar regolith related to abnormal particle shape,and the behaviour of lunar regolith/rock related to the distinctive composition and structure characteristics. Therefore,several theoretical and experimental innovative research methods need to be put forward,which can effectively make up for the incapability and shortcoming of current research methods.In theoretical aspects,the stress gradient-related high-order mechanical theory for lunar regolith/rock needs to be proposed to characterize the behaviour of lunar regolith/rock under gravity induced low stress gradient.The mathematical representation and numerical reconstruction of lunar regolith particle is another theoretical innovation,which may help to reveal the complex particle shape of lunar regolith and its influence on mechanical properties.Furthermore,the abnormal particle shape-related multiscale mechanical theory for lunar regolith should be developed to build the connection between its microscopic particle shape and macroscopic mechanical behaviour.In the experimental aspect,both the terrestrial experimental techniques used to simulate the lunar space environment and used to prepare lunar regolith/rock simulants need to be carried out,which can provide a basic experimental platform for lunar mining related mechanical issues.
引文
[1] RUESS F,SCHAENZLIN J,BENAROYA H. Structural design of a lunar habitat[J]. Journal of Aerospace Engineering,2006,19(3):133-157.
    [2]赵艳芳.月球潜在资源利用对中国能源安全的战略意义[J].资源开发与市场,2010,26(12):1130-1133.ZHAO Yanfang. Developing of moon potential resources:Strategic significances to energy security of China[J]. Resource Development&Market,2010,26(12):1130-1133.
    [3] BELL L.Top-level considerations for planning lunar/planetary habitat structures[J]. Journal of Aerospace Engineering,2010,24(3):349-360.
    [4] MCCULLOUGH E,JEWELL P,TUKKARAJA P.Expanding mineral resources:Technical considerations for extraterrestrial mining[A].Earth and Space 2014[C].St.Louis:American Society of Civil Engineers,2015:368-374.
    [5]欧阳自远.天体化学[M].北京:科学出版社,1988:1-322.
    [6]中国科学院地球化学研究所.月质学研究进展[M].北京:科学出版社,1977:1-312.
    [7] HEIKEN G,VANIMAN D,FRENCH B M.Lunar sourcebook:A user’s guide to the Moon[M]. Cambridge:Cambridge University Press,1991:121-155.
    [8]欧阳自远,邹永廖,李春来,等.月球某些资源的开发利用前景[J].地球科学-中国地质大学学报,2002,27(5):498-503.OUYANG Ziyuan,ZOU Yongliao,LI Chunlai,et al. Prospect of exploration and utilization of some lunar resources[J].Earth ScienceJournal of China University of Geosciences,2002,27(5):498-503.
    [9] HEAD J W. Lava flooding of ancient planetary crusts:Geometry,thickness,and volumes of flooded lunar impact basins[J]. Moon&the Planets,1982,26(1):61-88.
    [10] GIGUERE T A,TAYLOR G J,HAWKE B R,et al. The titanium contents of lunar mare basalts[J].Meteoritics&Planetary Science,2000,35(1):193-200.
    [11] JOLLIFF B L,GILLIS J J,HASKIN L A,et al. Major lunar crustal terranes:Surface expressions and crust-mantle origins[J]. Journal of Geophysical Research,2000,105(E2):4197.
    [12] HASKIN L A,GILLIS J J,KOROTEV R L,et al. The materials of the lunar Procellarum KREEP Terrane:A synthesis of data from geo-morphological mapping,remote sensing,and sample analyses[J].Journal of Geophysical Research Planets,2000,105(E8):20403-20415.
    [13] COSTES N C,COHRON G T,MOSS D C.Cone penetration resistance test-an approach to evaluating in-place strength and packing characteristics of lunar soils[A].2nd Lunar Science Conference[C].Houston:NASA,1971,3:1973-1987.
    [14] BOLES W W,SCOTT W D,CONNOLLY J F.Excavation forces in reduced gravity environment[J].Journal of Aerospace Engineering,1997,10(2):99-103.
    [15] ALSHIBLI K A,STURE S,COSTES N C.Constitutive and stability behavior of soils in micro-gravity environment[A].Space Technology and Applications International Forum 2000[C]. Albuquerque:American Institute of Physics,2000:246-252.
    [16] NAKASHIMA H,SHIOJI Y,TATEYAMA K,et al.Specific cutting resistance of lunar regolith simulant under low gravity conditions[J].Journal of Space Engineering,2008,1(1):58-68.
    [17] LI R,ZHOU G,HALL M R.Micro-mechanical behaviour of granular materials under gravity-induced stress gradient[J]. Granular Matter,2018,20(3):53.
    [18] LI R,ZHOU G,HALL M R,et al.Arching effect of planetary regolith simulant under extraterrestrial gravities[J]. Journal of Aerospace Engineering,2018,31(6):04018097.
    [19]邹猛,刘国敏,李建桥,等.微重力环境轮下月壤运动状态细观分析[J].交通运输工程学报,2009,9(6):21-25.ZOU Meng,LIU Guomin,LI Jianqiao,et al. Microscopic study on dynamic behavior of lunar regolith under driving wheel in microgravity circumstance[J].Journal of Traffic and Transportation Engineering,2009,9(6):21-25.
    [20]蒋明镜,戴永生,王新新.低重力环境下静力触探贯入机理离散元分析[J].岩土工程学报,2014,36(11):2045-2053.JIANG Mingjing,DAI Yongsheng,WANG Xinxin. DEM analysis of cone penetration tests under low gravity conditions[J]. Chinese Journal of Geotechnical Engineering,2014,36(11):2045-2053.
    [21]石睿杨.低重力场对模拟月壤力学特性及轮-壤作用关系影响的研究[D].长春:吉林大学,2014:41-68.SHI Ruiyang. Research on influence of low gravity on mechanical properties of lunar soil simulant and interaction between lunar soil simulant and lunar rover[D]. Changchun:Jilin University,2014:41-68.
    [22]邹维列,陈轮,张俊峰,等.低围压水平下QH-E模拟月壤三轴试验技术与力学特性[J].岩土工程学报,2015,37(8):1418-1425.ZOU Weilie,CHEN Lun,ZHANG Junfeng,et al.Techniques for triaxial compression tests on simulant lunar soil QH-E and its mechanical behaviors under low confining stress[J]. Chinese Journal of Geotechnical Engineering,2015,37(8):1418-1425.
    [23] ZOU M,FAN S,SHI R,et al.Effect of gravity on the mechanical properties of lunar regolith tested using a low gravity simulation device[J].Journal of Terramechanics,2015,60:11-22.
    [24] SALISBURY J W,GLASER P E,STEIN B A,et al.Adhesive behavior of silicate powders in ultrahigh vacuum[J]. Journal of Geophysical Research,1964,69(2):235-242.
    [25] VEY E,NELSON J D. Engineering properties of simulated lunar soils[J].Journal of the Soil Mechanics and Foundations Division,1965,91(1):25-52.
    [26] KROKOSKY E M,HUSAK A.Strength characteristics of basalt rock in ultra-high vacuum[J]. Journal of Geophysical Research,1968,73(6):2237-2247.
    [27] JOHNSON S W,SMITH J A,FRANKLIN E G,et al.Gravity and atmospheric pressure effects on crater formation in sand[J]. Journal of Geophysical Research,1969,74(20):4838-4850.
    [28] KARAFIATH L L.Friction between solids and simulated lunar soils in ultrahigh vacuum and its significance for the design of lunar roving vehicles[A].Proceedings of the 2nd International Astronomical Union(IAU)Colloquium[C]. Washington:National Bureau of Standard Special Publication,1970,336:225-244.
    [29] NOWATZKI E A.The effect of a thermal and ultrahigh vacuum environment on the strength of precompressed granular materials[J].Earth,Moon,and Planets,1972,5(1):31-40.
    [30] CARRIER D W,CROMWELL L G,MARTIN R T.Behavior of returned lunar soil in vacuum[J]. Journal of the Soil Mechanics and Foundations Division,1973,99(11):979-996.
    [31] DESAI C S,SAADATMANESH H,ALLEN T.Behavior of compacted lunar simulates using new vacuum triaxial device[J].Journal of Aerospace Engineering,1992,5(4):425-441.
    [32] PERKO H A,NELSON J D,SADEH W Z.Surface cleanliness effect on lunar soil shear strength[J].Journal of geotechnical and geoenvironmental engineering,2001,127(4):371-383.
    [33] ORAVEC H A,ABEL P B,ASNANI V M.Simulation of the lunar environment for the study of regolith strength[A].Earth and Space2010:Engineering,Science,Construction,and Operations in Challenging Environments[C].Honolulu:American Society of Civil Engineers,2010:217-230.
    [34]张学锋,吴国华,丁文江.高低温处理条件下AZ31镁合金的力学性能与微观组织[J].中国有色金属学报,2011,21(12):2979-2986.ZHANG Xuefeng,WU Guohua,DING Wenjiang. Mechanical properties and microstructures of AZ31 magnesium alloy after high and low temperature treatment[J]. The Chinese Journal of Nonferrous Metals,2011,21(12):2979-2986.
    [35]张学锋.模拟月球环境温度下的镁合金显微组织与力学性能研究[D].上海:上海交通大学,2012:26-71.ZHANG Xuefeng. Study on the micro structure and mechanical properties of magnesium alloys under simulated lunar-environment temperature[D]. Shanghai:Shanghai Jiao Tong University,2012:26-71.
    [36] SHKURATOV Y G,BONDARENKO N V. Regolith layer thickness mapping of the Moon by radar and optical data[J]. Icarus,2001,149(2):329-338.
    [37] MCKAY D S,CARTER J L,WOLES W W.JSC-1:A new lunar soil stimulant[A]. Engineering,Construction,and Operations in Space IV[C]. Albuquerque:American Society of Civil Engineers,1994:857-866.
    [38]郑永春,欧阳自远,王世杰,等.月壤的物理和机械性质[J].矿物岩石,2004,24(4):14-19.ZHENG Yongchun,OUYANG Ziyuan,WANG Shijie,et al.Physical and mechanical properties of lunar regolith[J].Journal of Mineralogy and Petrology,2004,24(4):14-19.
    [39]李丽华,唐辉明,刘数华.月壤及模拟月壤微观结构的研究[J].岩土力学,2012,33(1):35-38.LI Lihua,TANG Huiming,LIU Shuhua.Microstructure of lunar soil and lunar soil simulant[J]. Rock and Soil Mechanics,2012,33(1):35-38.
    [40] LI Y,ZENG X,WILKINSON A.Measurement of small cohesion of jsc-1a lunar simulant[J].Journal of Aerospace Engineering,2013,26(4):882-886.
    [41]林呈祥,钟世英,凌道盛.模拟月壤颗粒形状特征及其对抗剪强度影响分析[J].东北大学学报(自然科学版),2016,37(11):1640-1644.LIN Chengxiang,ZHONG Shiying,LING Daosheng.Analysis of particle shape characteristics of lunar soil simulant and its effect on shear strength[J].Journal of Northeastern University(Natural Science),2016,37(11):1640-1644.
    [42] CARRIER W D.Particle size distribution of lunar soil[J].Journal of Geotechnical&Geo-environmental Engineering,2003,129(10):956-959.
    [43] ARSLAN H,STURE S,BATISTE S. Experimental simulation of tensile behavior of lunar soil simulant JSC-1[J].Materials Science&Engineering A,2008,478(1-2):201-207.
    [44] MACKE R J,KIEFER W S,BRITT D T,et al. Density,porosity and magnetic susceptibility of lunar rocks[A]. 41st Lunar and Planetary Science Conference[C].Woodlands:NASA,2010:1252.
    [45]李斌斌,周琴,何录忠,等.月岩采样及其物理力学特性调研分析[J].探矿工程(岩土钻掘工程),2015,42(5):1-7.LI Binbin,ZHOU Qin,HE Luzhong,et al. Lunar rock sampling and the investigation&analysis on the physical and mechanical properties[J]. Exploration Engineering(Rock&Soil Drilling and Tunneling),2015,42(5):1-7.
    [46] KHALID A A,STEIN S,NICHOLAS C C.Constitutive and stability behavior of soils in microgravity environment[A].Space Technology and Applications International Forum 2000[C]. Albuquerque:American Institute of Physics,2000:246-252.
    [47]李瑞林.重力引起的应力梯度作用下颗粒介质力学行为研究[D].徐州:中国矿业大学,2018:45-110.LI Ruilin. Mechanical behaviour of granular matter under gravityinduced stress gradient[D]. Xuzhou:China University of Mining and Technology,2018:45-110.
    [48] STURE S,COSTES N C,BATISTE S N,et al.Mechanics of granular materials at low effective stresses[J].Journal of Aerospace Engineering,1998,11(3):67-72.
    [49] LI R,ZHOU G,CHEN G,et al.Geotechnical magnetic-similitudegravity model testing method[J]. International Journal of Physical Modelling in Geotechnics,https://doi.org/10.1680/jphmg.17.00014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700