用户名: 密码: 验证码:
太湖蓝藻水华“暴发”的动态特征及其机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamics of variability and mechanism of harmful cyanobacteria bloom in Lake Taihu, China
  • 作者:秦伯强 ; 杨桂军 ; 马健荣 ; 邓建明 ; 李未 ; 吴挺峰 ; 刘丽贞 ; 高光 ; 朱广伟 ; 张运林
  • 英文作者:QIN BoQiang;YANG GuiJun;MA JianRong;DENG JianMing;LI Wei;WU TingFeng;LIU LiZhen;GAO Guang;ZHU GuangWei;ZHANG YunLin;Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences;Environment and Civil Engineering School, Jiangnan University;Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, the Three Gorges Institute of Ecological Environment;Poyang Lake Research Center, Jiangxi Academy of Science;
  • 关键词:太湖 ; 蓝藻生长 ; 微囊藻细胞团 ; 水华暴发 ; 水动力 ; 概念性模式
  • 英文关键词:Lake Taihu;;growth of cyanobacteria;;colony of Microcystis;;breakout of blooms;;hydrodynamic force;;conceptual model
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:中国科学院南京地理与湖泊研究所;江南大学环境与土木工程学院;中国科学院重庆绿色智能技术研究院三峡生态环境研究所;江西省科学院鄱阳湖研究中心;
  • 出版日期:2016-03-10
  • 出版单位:科学通报
  • 年:2016
  • 期:v.61
  • 基金:国家自然科学基金(41230744,41471021);; 国家重大科技专项(2012ZX07101-010);; 中国科学院重大交叉项目(KZCX2-YW-419)资助
  • 语种:中文;
  • 页:KXTB201607014
  • 页数:12
  • CN:07
  • ISSN:11-1784/N
  • 分类号:90-101
摘要
湖泊富营养化和有害藻类水华是目前全世界普遍面临的水域生态环境问题.太湖是典型的大型浅水富营养化湖泊,其富营养化导致的蓝藻水华"暴发"常常呈现时间和空间上的高度变异与不稳定性.以往的研究,无论是国际上流行的光合作用调节的藻类细胞上浮与下沉,还是国内流行的蓝藻水华"暴发"四阶段理论,都无法很好地解释太湖蓝藻水华"暴发"的时空动态变化特性.本文基于对太湖多次的野外观测与模拟实验,提出了关于太湖蓝藻水华"暴发"的全新概念性解释.在蓝藻细胞生长阶段,营养盐、温度、光照等环境因素影响较为显著,决定了蓝藻生物量的多少,为蓝藻水华"暴发"蓄积物质基础;在蓝藻水华暴发阶段,则主要受蓝藻细胞(团)浮力作用与水动力湍流作用的共同影响,决定了蓝藻水华出现后的规模、范围及位置.野外调查显示,在太湖这样的大型浅水湖泊,风浪作用条件下蓝藻细胞(团)在水柱中呈均匀分布;而当风浪消失后,蓝藻细胞(团)即迅速上浮形成水体表面可见的水华.蓝藻颗粒的上浮速度随着细胞团的增大而加快,适度的扰动促使蓝藻细胞团碰撞而形成更大的细胞团,更容易在水动力消失后快速上浮形成水华.湖流的辐合辐散是蓝藻水华上浮后形成可见的斑块形状、位置、漂移和聚集的决定因素.正是太湖地区风场高度多变与不稳定,才导致太湖蓝藻水华"暴发"的时空分布呈现多变的动态特征.上述研究结果澄清了长期以来一直困扰人们的太湖蓝藻水华难以监测、无法防控的问题,为蓝藻水华监测、预测预警、防控及应对措施的制定提供了科学的理论依据.
        Eutrophication of lakes and harmful algae blooms are recently widespread water ecological environmental issues all over the world. Lake Taihu is a typical large shallow and eutrophic lake, and the cyanobacteria blooms induced by eutrophication have always been presenting high spatial-temporal variability and instability that made it very difficult to monitor and predict. Many previous publications have related to the eutrophication and cyanobacteria bloom with the most attention paid to phytoplankton growth, biomass increase and dominant species, while a few works addressed the appearance/disappearance of cyanobacteria bloom; however, none of them could explain the swift shift of cyanobacteria bloom in time and space in Lake Taihu. Based on the long-term field observation data and simulation experiments in Lake Taihu, here we presented a physical process controlled cyanobacteria bloom formation mechanism. In Lake Taihu, the visible cyanobacteria bloom occurrence was mainly controlled by the hydrodynamic intensity. When the cyanobacteria biomass accumulated in the water column, the large size colonies would increase during the process of cell division and proliferation, cells and colonies collisions, colonies aggregation(due to the stick extracellular polysaccharides) and disaggregation(due to the intensive turbulence). The bloom would occur if the wind influence decline and the colonies suspended at water column were able to float to the water surface to form bloom and scum. These colonies floating at the surface couldnot migrate downward because of the large size and great buoyancy; furthermore, they would drift to the downwind zone. But even the hydrodynamic process played the key role in the cyanobacteria bloom formation in this large shallow lake; it couldnot exclude the existence of other dynamics determining the cyanobacteria bloom formation. During the calm weather periods, the light controlled colonies diurnal migration, the zooplankton predation induced colony formation, and toxic materials induced colony aggregation, all would promote the cyanobacteria bloom formation. Thus these physiological induced cyanobacteria bloom occurrence modes and physical process controlled modes would alternatively take place in this large shallow lake. This revised cyanobacteria bloom occurrence dynamics in large eutrophic lake provided the possibility for forecasting and preventing the cyanobacteria bloom. Because Lake Taihu has been functioning as drinking water source for millions of around people, precise prediction and precaution of the bloom could increase the efficiency of cyanobacteria bloom collection, which had important practical significance for reducing the nutrient loading for reuse by cyanobacteria and decreasing the risk of cyanobacteria scum decaying induced drinking water pollution.
引文
1 Qin B Q.Approaches to mechanisms and control of eutrophication of shallow lakes in the middle and lower reaches of the Yangze River.J Lake Sci,2002,14:193-202[秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探.湖泊科学,2002,14:193-202]
    2 Liu J,Yang W.Water sustainability for China and beyond.Science,2012,337:649-650
    3 Huisman J,Matthijs H C,Visser P M.Harmful Cyanobacteria.Dordrecht,Netherlands:Springer,2005
    4 Chorus E I,Bartram J.Toxic Cyanobacteria in Water:A Guide to Their Public Health Consequences,Monitoring and Management.London:E&FN Spon,1999.17
    5 Qin B Q,Zhu G W,Gao G,et al.A drinking water crisis in Lake Taihu,China:Linkage to climatic variability and lake management.Environ Manage,2010,45:105-112
    6 Guo L.Doing battle with the green monster of Taihu Lake.Science,2007,317:1166
    7 Micheli F.Eutrophication,fisheries,and consumer-resource dynamics in marine pelagic ecosystems.Science,1999,285:1396-1398
    8 Diaz R J,Rosenberg R.Spreading dead zones and consequences for marine ecosystems.Science,2008,321:926-929
    9 Ma Z,Xie P,Chen J,et al.Microcystis blooms influencing volatile organic compounds concentrations in Lake Taihu.Fresen Environ Bull,2013,22:95-102
    10 Vonlanthen P,Bittner D,Hudson A,et al.Eutrophication causes speciation reversal in whitefish adaptive radiations.Nature,2012,482:357-362
    11 Schindler D.Eutrophication and recovery in experimental lakes:Implications for lake management.Science,1974,184:897-899
    12 Smith V H,Tilman G D,Nekola J C.Eutrophication:Impacts of excess nutrient inputs on freshwater,marine,and terrestrial ecosystems.Environ Pollut,1999,100:179-196
    13 Paerl H W,Hall N S,Calandrino E S.Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change.Sci Total Environ,2011,409:1739-1745
    14 Foy R,Gibson C,Smith R.The influence of daylength,light intensity and temperature on the growth rates of planktonic blue-green algae.Brit Phycol J,1976,11:151-163
    15 Reynolds C S.The Ecology of Phytoplankton.Cambridge:Cambridge University Press,2006
    16 Cao H S,Kong F X,Luo L C,et al.Effects of wind and wind-induced waves on vertical phytoplankton distribution and surface blooms of Microcystis aeruginosa in Lake Taihu.J Freshwater Ecol,2006,21:231-238
    17 Hunter P,Tyler A,Willby N,et al.The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake:Acase study using high spatial resolution time-series airborne remote sensing.Limnol Oceanogr,2008,53:2391-2406
    18 Wu T,Qin B,Zhu G,et al.Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow,eutrophic,and wind-exposed Lake Taihu,China.Environ Sci Pollut Res,2013,20:8546-8556
    19 George D.Physical and chemical scales of pattern in freshwater lakes and reservoirs.Sci Total Environ,1993,135:1-15
    20 Pobel D,Robin J,Humbert J F.Influence of sampling strategies on the monitoring of cyanobacteria in shallow lakes:Lessons from a case study in France.Water Res,2011,45:1005-1014
    21 Oliver R L.Floating and sinking in gas-vacuolate cyanobacteria.J Phycol,1994,30:161-173
    22 Reynolds C S,Oliver R L,Walsby A E.Cyanobacterial dominance:The role of buoyancy regulation in dynamic lake environments.New Zeal J Mar Fresh,1987,21:379-390
    23 Qin B Q,Xu P,Wu Q,et al.Environmental issues of lake Taihu,China.Hydrobiologia,2007,581:3-14
    24 Chen Y,Qin B Q,Teubner K,et al.Long-term dynamics of phytoplankton assemblages:Microcystis-domination in Lake Taihu,a large shallow lake in China.J Plankton Res,2003,25:445-453
    25 Zhang Y,Lin S,Qian X,et al.Temporal and spatial variability of chlorophyll a concentration in Lake Taihu using MODIS time-series data.Hydrobiologia,2011,661:235-250
    26 Duan H,Ma R,Xu X,et al.Two-decade reconstruction of algal blooms in China’s Lake Taihu.Environ Sci Technol,2009,43:3522-3528
    27 Zhang M,Duan H T,Shi X L,et al.Contributions of meteorology to the phenology of cyanobacterial blooms:implications for future climate change.Water Res,2012,46:442-452
    28 Deng J,Qin B Q,Paerl H W,et al.Earlier and warmer springs increase cyanobacterial(Microcystis spp.)blooms in subtropical Lake Taihu,China.Freshwater Biol,2014,59:1076-1085
    29 Stone R.China aims to turn tide against toxic lake pollution.Science,2011,333:1210-1211
    30 Qin B Q,Li W,Zhu G W,et al.Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu(China).J Hazard Mater,2015,287:356-363
    31 Li W,Qin B,Zhu G.Forecasting short-term cyanobacterial blooms in Lake Taihu,China,using a coupled hydrodynamic-algal biomass model.Ecohydrology,2014,7:794-802
    32 Ma R H,Kong F X,Duan H T,et al.Spatio-temporal distribution of cyanobacteria blooms based on satellite imageries in Lake Taihu,China(in Chinese).J Lake Sci,2008,20:687-699[马荣华,孔繁翔,段洪涛,等.基于卫星遥感的太湖蓝藻水华时空分布规律认识.湖泊科学,2008,20:687-699]
    33 Walsby A E.Gas vesicles.Microbiol Rev,1994,58:94
    34 Walsby A E,Hayes P K,Boje R,et al.The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea.New Phytol,1997,136:407-417
    35 Wu X,Kong F.Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom.Int Rev Hydrobiol,2009,94:258-266
    36 Reynolds C S.The ecology of the planktonic bluegreen algae in the North Shropshire Meres,England.Fld Stud,1971,3:409-432
    37 Xiao Y,Gan N,Liu J,et al.Heterogeneity of buoyancy in response to light between two buoyant types of cyanobacterium Microcystis.Hydrobiologia,2012,679:297-311
    38 O’Brien K R,Meyer D L,Waite A M,et al.Disaggregation of Microcystis aeruginosa colonies under turbulent mixing:Laboratory experiments in a grid-stirred tank.Hydrobiologia,2004,519:143-152
    39 Webster I,Hutchinson P A.Effect of wind on the distribution of phytoplankton cells in lakes revisited.Limnol Oceanogr,1994,39:365-373
    40 Sheng G P,Yu H Q,Li X Y.Extracellular polymeric substances(EPS)of microbial aggregates in biological wastewater treatment systems:A review.Biotechnol Adv,2010,28:882-894
    41 De Philippis R,Vincenzini M.Exocellular polysaccharides from cyanobacteria and their possible applications.FEMS Microbiol Rev,1998,22:151-175
    42 Liu L,Qin B Q,Zhu G W,et al.Distribution of dissolved acidic polysaccharides(d APS)during cyanobacteria blooms in northern Lake Taihu.Limnology,16:21-29
    43 Xu H,Paerl H W,Qin B,et al.Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China.Limnol Oceanogr,2010,55:420-432
    44 Burkert U,Hyenstrand P,Drakare S,et al.Effects of the mixotrophic flagellate Ochromonas sp.on colony formation in Microcystis aeruginosa.Aquat Ecol,2001,35:11-17
    45 Yang Z,Kong F X,Shi X L,et al.Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton.Hydrobiologia,2006,563:225-230
    46 Yang G J,Qin B Q,Gao G,et al.Effect of Ceriodaphnia cornuta in colony formation of Microcystis in Lake Taihu(in Chinese).J Lake Sci,2009,21:495-501[杨桂军,秦伯强,高光,等.角突网纹溞在太湖微囊藻群体形成中的作用.湖泊科学,2009,21:495-501]
    47 Zhou J,Yang G J,Qin B Q,et al.Effects of nitrogen and phosphorous on colony formation of Microcystis aeruginosa(in Chinese).Res Environ Sci,2014,27:1251-1257[周健,杨桂军,秦伯强,等.氮磷对铜绿微囊藻群体形态的影响.环境科学研究,2014,1251-1257]
    48 Gan N,Xiao Y,Zhu L,et al.The role of microcystins in maintaining colonies of bloom-forming Microcystis spp.Environ Microbiol,2012,14:730-742
    49 Nielsen S L.Size-dependent growth rates in eukaryotic and prokaryotic algae exemplified by green algae and cyanobacteria:Comparisons between unicells and colonial growth forms.J Plankton Res,2006,28:489-498
    50 Jonsson P R,Pavia H,Toth G.Formation of harmful algal blooms cannot be explained by allelopathic interactions.Proc Natl Acad Sci USA,2009,106:11177-11182
    51 Kong F X,Gao G.Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes.Acta Ecol Sin,2005,25:589-595[孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考.生态学报,2005,25:589-595]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700