用户名: 密码: 验证码:
利用电解锰渣制备As(Ⅲ)吸附材料及其性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of As(Ⅲ) adsorbent material by electrolytic manganese slag and its properties
  • 作者:孙燕 ; 蓝际荣 ; 郭莉 ; 孙朋 ; 叶恒朋 ; 杜冬云 ; 占伟
  • 英文作者:SUN Yan;LAN Jirong;GUO Li;SUN Peng;YE Hengpeng;DU Dongyun;ZHAN Wei;Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central University for Nationalities;Key Laboratory of Resources Green Conversion and Utilization of the State Ethnic Affairs Commission & Ministry of Education;
  • 关键词:电解锰渣 ; 除砷 ; 微波 ; 再生 ; 吸附剂
  • 英文关键词:electrolytic manganese residues;;arsenic removal;;microwave;;regeneration;;sorbents
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:中南民族大学资源与环境学院湖北省重金属污染防治工程技术研究中心;民族地区资源绿色转化与利用国家民委-教育部重点实验室;
  • 出版日期:2019-03-20 09:03
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家科技支撑计划项目(2015BAB01B03);; 中南民族大学中央高校项目(CZT18022)
  • 语种:中文;
  • 页:HGSZ201906039
  • 页数:9
  • CN:06
  • ISSN:11-1946/TQ
  • 分类号:359-367
摘要
通过对工业废弃物电解锰渣(electrolytic manganese residues, EMRs)进行改性制备As(Ⅲ)吸附材料(改性EMRs),探究了NaOH用量、超声及微波对其表面结构及吸附性能的影响。结果表明:该工业废渣在固液比M(EMRs)∶V(NaOH, aq)=1∶10(C_(NaOH,aq)=2.0 mol·L~(-1))条件下,经超声反应(200 W) 2 h脱除大部分Si、S、Ca后,再微波(700 W)反应5 min以使Fe、Mn等活性吸附基团在其表面沉积,最后经105℃烘干制得改性EMRs。SEM结果表明,EMRs改性后表面形成片层纳米结构,对砷具有良好的吸附性能,可将初始As(Ⅲ)浓度为50 mg·L~(-1)废水出水中砷降至0.042 mg·L~(-1),符合国家地表水环境质量标准Ⅰ类水质量要求(GB 3838—2002);同时,经3%NaOH溶液再生处理后可继续使用。XPS结果表明,改性EMRs吸附砷性能与其表面Fe_3O_4、FeOOH、MnO_2等对As(Ⅲ)具有吸附作用或氧化作用的活性物种的增多密切相关。
        As(Ⅲ) adsorbent(called modified EMRs) was prepared by modifying the industrial waste electrolytic manganese residues(EMRs). The effects of NaOH dosage, ultrasonic and microwave on its surface structure and adsorption performance were investigated. The results showed that most of the Si, S and Ca were removed by ultrasonic reaction(200 W) for 2 h with solid-liquid ratio M(EMRs)∶V(NaOH, aq) = 1∶10(C_(NaOH,aq)= 2.0 mol·L~(-1)).Fe, Mn and other active adsorption groups were deposited on the surface after the microwave(700 W) was reacted for 5 min. Finally, the adsorbent dried at 105℃. The SEM results show that the surface of the material has a lamellar nanostructure and good adsorption performance for arsenic. The initial As( Ⅲ) concentration of 50 mg · L~(-1) wastewater effluent can be reduced to 0.042 mg·L~(-1). The national surface water environmental quality standard Class I water quality requirements(GB 3838—2002), at the same time, can be continued after being regenerated by3% NaOH solution. XPS results show that the adsorption of arsenic by modified EMRs is closely related to the increase of active species such as Fe_3O_4, FeOOH and MnO_2 on As(Ⅲ) adsorption or oxidation.
引文
[1]姚瑛瑛,郭莉,胡中求,等.超声辅助碱浸铜冶炼烟灰中铜砷分离[J].化工学报, 2018, 69(9):3983-3992.Yao Y Y, Guo L, Hu Z Q, et al. Separation of copper and arsenic in copper smelting dust by Na2S-NaOH leaching assisted with ultrasound method[J]. CIESC Journal, 2018, 69(9):3983-3992.
    [2]彭昌军,姜秀丽,计红芳,等.铁锰复合氧化物对As(Ⅲ)、As(Ⅴ)的吸附研究及其在沼液中的应用[J].化工学报, 2014, 65(5):1848-1855.Peng C J, Jiang X L, Ji H F, et al. Adsorption behavior of Fe-Mn binary oxide towards As(Ⅲ)and As(V)and its application in biogas slurry[J]. CIESC Journal, 2014, 65(5):1849-1855.
    [3] Sun Z, Yi Y U, Pang S, et al. Manganese-modified activated carbon fiber(Mn-ACF):novel efficient adsorbent for arsenic[J].Applied Surface Science, 2013, 284(11):100-106.
    [4] Chen H Y, Lv K L, Du Y, et al. Microwave-assisted rapid synthesis of Fe2O3/ACF hybrid for high efficient As(Ⅴ)removal[J]. J. Alloy. Compd., 2016, 674(5):399-405.
    [5] Zhang Y, Yang M, Gao Y. Preparation and adsorption mechanism of rare earth-doped adsorbent for arsenic(Ⅴ)removal from groundwater[J]. Sci. China Ser. B, 2003, 46(3):252-258.
    [6] Halter W E, Pfeifer H. Arsenic(Ⅴ)adsorption ontoα-Al2O3between 25 and 70℃[J]. Applied Geochemistry, 2001, 16(7):793-802.
    [7] Stauffer R E, Thompson J M. Arsenic and antimony in geothermal waters of Yellow Stone National Park, Wyoming, USA[J].Geochimica et Cosmochimica Acta, 1984, 48(12):2547-2561.
    [8] Pascua C S, Minato M, Yokoyama S. Uptake of dissolved arsenic during the retrieval of silica from spent geothermal brine[J].Geothermics, 2007, 36(3):230-242.
    [9] Romero L, Alonso H, Campamo P. Arsenic enrichment in waters and sediments of the Rio Loa(Second Region, Chile)[J]. Applied Geochemistry, 2003, 18(9):1399-1416.
    [10] Berg M, Tran H C, Nguyen T C, et al. Arsenic contamination of groundwater and drinking water in Vietnam:a human health threat[J]. Environmental Science&Technology, 2001, 35(13):2621-2626.
    [11] Zhang Y X, Ye Y J, Liu Z L, et al. Monodispersed hierarchical aluminum/iron oxides composites micro/nanoflowers for efficient removal of As(V)and Cr(VI)ions from water[J]. Journal of Alloys and Compounds, 2016, 662(25):421-430.
    [12] Zhou J M, Chen S, Liu J, et al. Adsorption kinetic and species variation of arsenic for As(V)removal by biologically mackinawite(FeS)[J]. Chemical Engineering Journal, 2018, 354(8):237-244.
    [13]牛莎莎,王志兴,郭华军,等.电解锰阳极渣还原浸出锰[J].中国有色金属学报, 2012, 22(9):2662-2666.Niu S S, Wang Z X, Guo H J, et al. Reductive leaching of manganese from manganese anode slag[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(9):2662-2666.
    [14] Shu J, Liu R, Liu Z. Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO[J]. Journal of Hazardous Materials, 2016, 317(5):267-274.
    [15] Xin B, Chen B, Duan N. Extraction of manganese from electrolytic manganese residue by bioleaching[J]. Bioresource Technology,2011, 102(2):1683-1687.
    [16] Li C, Zhong H, Wang S, et al. Removal of basic dye(methylene blue)from aqueous solution using zeolite synthesized from electrolytic manganese residue[J]. Journal of Industrial&Engineering Chemistry, 2015, 23:344-352.
    [17] Chen H, Liu R, Liu Z. Immobilization of Mn and NH4+-N from electrolytic manganese residue waste[J]. Environmental Science&Pollution Research, 2016, 23(12):12352-12361.
    [18] Shu J, Wu H, Liu R, et al. Simultaneous stabilization/solidification of Mn2+and NH4+-N from electrolytic manganese residue using MgO and different phosphate resource[J].Ecotoxicology&Environmental Safety, 2018, 148(4):220-224.
    [19] Li J, Du D, Peng Q, et al. Activation of silicon in the electrolytic manganese residue by mechanical grinding-roasting[J]. Journal of Cleaner Production, 2018, 192(10):347-353
    [20]李明强.电解锰渣中锰元素的浸取研究[D].重庆:重庆大学,2015.Li M Q. The leaching of manganese from electrolytic manganese residues[D]. Chongqing:Chongqing University, 2015.
    [21] Shu J, Liu R, Liu Z. Simultaneous removal of ammonia and manganese from electrolytic metal manganese residue leachate using phosphate salt[J]. Journal of Cleaner Production, 2016, 135(1):468-475.
    [22]盘俊,谢能银,明宪权,等.锰矿浸渣中可溶锰离子的稳定化处理研究[J].广西大学学报(自然科学版), 2015, 40(3):551-557.Pan J, Xie N Y, Ming X Q, et al. The stabilizing treatment for the soluble manganese in manganese leaching slag[J]. Journal of Guangxi University(Nat. Sci. Ed.), 2015, 40(3):551-557.
    [23] Lu J, Dreisinger D, Gluck T. Electrolytic manganese metal production from manganese carbonate precipitate[J].Hydrometallurgy, 2016, 161(5):45-53.
    [24] Li J, Peng Q J Du D Y, et al. Activation of silicon in the electrolytic manganese residue by mechanical grinding-roasting[J]. Journal of Cleaner Production, 2018, 192(10):347-353.
    [25]陈振兴,李佳,杜冬云,等.硅酸盐细菌对电解锰渣中有效硅的活化研究[J].硅酸盐通报, 2018, 37(11):3581-3586.Chen Z X, Li J, Du D Y, et al. Study on activation of effective silicon in electrolytic manganese slag by silicate bacteria[J].Bulletin of the Chinese Ceramic Society, 2018, 37(11):3581-3586.
    [26]蓝际荣,李佳,杜冬云,等.锰渣堆肥过程中理化性质及基于Tessier法的重金属行为分析[J].环境工程学报, 2017, 11(10):5637-5643.Lan J R, Li J, Du D Y, et al. Physicochemical properties and heavy metals behavior analysis based on Tessier method in composting process of electrolytic manganese residue[J]. Chinese Journal of Environmental Engineering, 2017, 11(10):5637-5643.
    [27]彭秋菊,李佳,杜冬云,等.响应面法优化电解锰渣的微波活化有效硅工艺条件[J].硅酸盐通报, 2018, 37(8):2548-2554.Peng Q J, Li J, Du D Y, et al. Optimization of microwave activated effective silicon process conditions for electrolytic manganese residue by response surface methodology[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8):2548-2554.
    [28] Eslami H, Ehrampoush M H, Esmaeili A, et al. Enhanced coagulation process by Fe-Mn bimetal nano-oxides in combination with inorganic polymer coagulants for improving As(Ⅴ)removal from contaminated water[J]. Journal of Cleaner Production, 2018, 208(10):384-392.
    [29] Lan L J, Zheng B J, Zhang Y, et al. Rapid and effective removal of As(Ⅲ)and As(V)using spore@Ti4+microspheres[J].Chemosphere, 2018, 206(9):742-749.
    [30] Lee C G, Pedro J, Alvarez J, et al. Arsenic(Ⅴ)removal using an amine-doped acrylic ion exchange fiber:kinetic, equilibrium, and regeneration studies[J]. Journal of Hazardous Materials, 2017, 325(5):223-229.
    [31] Chen H, Lv K, Du Y, et al. Microwave-assisted rapid synthesis of Fe2O3/ACF hybrid for high efficient As(Ⅴ)removal[J]. Journal of Alloys and Compounds, 2016, 674(5):399-405.
    [32] Wang Y X, Bing Q Y, Fei F J, et al. Removal of As(Ⅴ)from aqueous solution by using cement-porous hematite composite granules as adsorbent[J]. Results in Physics, 2018, 11(12):23-29.
    [33] Paulina M, Jakub M, Tiina L, et al. Toward highly effective and easily separable halloysite-containing adsorbents:the effect of iron oxide particles impregnation and new insight into As(Ⅴ)removal mechanisms[J]. Separation and Purification Technology,2019, 210(8):390-401.
    [34] Oh C, Rhee S, Oh M, et al. Removal characteristics of As(Ⅲ)and As(V)from acidic aqueous solution by steel making slag[J].Journal of Hazardous Materials, 2012, 30(4):147-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700