用户名: 密码: 验证码:
微生物-矿物相互作用及界面显微分析研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress on research of microbe-mineral interaction and interfacial micro-analysis
  • 作者:王蕾 ; 夏金兰 ; 朱泓睿 ; 刘红昌 ; 聂珍媛 ; 刘李柱
  • 英文作者:WANG Lei;XIA Jin-Lan;ZHU Hong-Rui;LIU Hong-Chang;NIE Zhen-Yuan;LIU Li-Zhu;Key Laboratory of Biometallurgy of Ministry of Education of China, School of Resources Processing and Bioengineering, Central South University;
  • 关键词:微生物-矿物 ; 形态转化 ; 胞外多聚物 ; 氧化活性 ; 界面作用
  • 英文关键词:Microbe-mineral interaction;;Speciation transformation;;Extracellular polymeric substance;;Oxidation activity;;Interfacial interaction
  • 中文刊名:WSWT
  • 英文刊名:Microbiology China
  • 机构:中南大学资源加工与生物工程学院生物冶金教育部重点实验室;
  • 出版日期:2016-12-28 13:53
  • 出版单位:微生物学通报
  • 年:2017
  • 期:v.44
  • 基金:国家自然科学基金资助项目(No.51274257);国家自然科学基金-大科学装置联合基金项目(No.U1232103);国家自然科学基金-辽宁联合基金项目(No.U1608254)~~
  • 语种:中文;
  • 页:WSWT201703030
  • 页数:10
  • CN:03
  • ISSN:11-1996/Q
  • 分类号:217-226
摘要
微生物-矿物界面的相互作用贯穿着整个生物浸矿过程,在矿物生物浸出中至关重要,受到微生物的代谢特征、矿物表面结构和物质形态及环境条件的多重交叉影响。研究微生物-矿物界面的相互作用相关的微生物选择性吸附、矿物表面元素形态转化和钝化层、微生物铁硫氧化活性和微生物群落以及胞外物质的组成和性质等的演化,有利于了解微生物-矿物界面作用机制及其关键影响因素和影响机制,从而为优化浸出工艺提供科学的理论依据。达到这些目的,界面的(原位)显微分析手段和技术的进步也至关重要。本文对近些年来上述两方面的研究进行了综述。
        Microbe-mineral interfacial interaction plays an important role in bioleaching process. It could be affected by the multi-influential factors among the metabolic characteristic of the microbes, state of the mineral surface structure, chemical speciation and the environmental factors. Researches on selective adsorption of microbes, conversion in mineral surface chemical speciation and passivation layer structure, microbial community and iron/sulfur oxidizing activities, and the composition and properties of extracellular polymer substance can help us to better understand the microbe-mineral interaction mechanism accompanying with its key influential factors and influential mechanism. This researches can also provide scientific base for optimization of the bioleaching techniques. In order to achieve these purposes, the progress in methodology and techniques for in situ(micro) analysis of the interfacial interaction is also pivotal. In this article, we reviewed the progresses on research of microbe-mineral interaction and interfacial micro-analysis in the recent years.
引文
[1]Brierley CL.Biohydrometallurgical prospects[J].Hydrometallurgy,2010,104(3/4):324-328
    [2]Liu JS,Wang ZH,Gen MM,et al.Progress in the study of polyphase interfacial interactions between microorganism and mineral in bio-hydrometallurgy[J].Mining and Metallurgical Engineering,2006,26(1):40-44(in Chinese)柳建设,王兆慧,耿梅梅,等.微生物浸出中微生物-矿物多相界面作用的研究进展[J].矿冶工程,2006,26(1):40-44
    [3]Liang CL,Xia JL,Yang Y,et al.Progress in sulfur speciation transformation during chalcopyrite bioleaching[J].The Chinese Journal of Nonferrous Metals,2012,22(1):265-273(in Chinese)梁长利,夏金兰,杨益,等.黄铜矿生物浸出过程的硫形态转化研究进展[J].中国有色金属学报,2012,22(1):265-273
    [4]Tan SN,Chen M.Early stage adsorption behaviour of Acidithiobacillus ferrooxidans on minerals I:an experimental approach[J].Hydrometallurgy,2012,119-120:87-94
    [5]Zhang RY,Neu TR,Bellenberg S,et al.Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms[J].Microbial Biotechnology,2015,8(3):448-461
    [6]Xia JL,Zhu HR,Wang L,et al.In situ characterization of relevance of surface microstructure and electrochemical properties of chalcopyrite to adsorption of Acidianus manzaensis[J].Advanced Materials Research,2015,1130:183-187
    [7]Xia JL,Yang Y,He H,et al.Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans[J].International Journal of Mineral Processing,2010,94(1/2):52-57
    [8]Africa CJ,Harrison STL,Becker M,et al.In situ investigation and visualisation of microbial attachment and colonisation in a heap bioleach environment:the novel biofilm reactor[J].Minerals Engineering,2010,23(6):486-491
    [9]Liu H,Gu GH,Xu YB.Surface properties of pyrite in the course of bioleaching by pure culture of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans[J].Hydrometallurgy,2011,108(1/2):143-148
    [10]Zhu W,Xia JL,Yang Y,et al.Thermophilic archaeal community succession and function change associated with the leaching rate in bioleaching of chalcopyrite[J].Bioresource Technology,2013,133:405-413
    [11]Chen ML,Zhang L,Gu GH,et al.Effects of microorganisms on surface properties of chalcopyrite and bioleaching[J].Transactions of Nonferrous Metals Society of China,2008,18(6):1421-1426
    [12]Africa CJ,van Hille RP,Harrison STL.Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite,chalcopyrite,low-grade ore and quartz in a packed column reactor[J].Applied Microbiology and Biotechnology,2013,97(3):1317-1324
    [13]Dong YB,Lin H,Xu XF,et al.Comparative study on the bioleaching,biosorption and passivation of copper sulfide minerals[J].International Biodeterioration&Biodegradation,2013,84:29-34
    [14]Richardson DJ,Butt JN,Clarke TA.Controlling electron transfer at the microbe-mineral interface[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(19):7537-7538
    [15]Fantauzzi M,Licheri C,Atzei D,et al.Arsenopyrite and pyrite bioleaching:evidence from XPS,XRD and ICP techniques[J].Analytical and Bioanalytical Chemistry,2011,401(7):2237-2248
    [16]Lee J,Acar S,Doerr DL,et al.Comparative bioleaching and mineralogy of composited sulfide ores containing enargite,covellite and chalcocite by mesophilic and thermophilic microorganisms[J].Hydrometallurgy,2011,105(3/4):213-221
    [17]He H,Xia JL,Hong FF,et al.Analysis of sulfur speciation on chalcopyrite surface bioleached with Acidithiobacillus ferrooxidans[J].Minerals Engineering,2012,27-28:60-64
    [18]Zhu W,Xia JL,Yang Y,et al.Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite[J].Bioresource Technology,2011,102(4):3877-3882
    [19]Yang Y,Liu WH,Chen M.A copper and iron K-edge XANES study on chalcopyrite leached by mesophiles and moderate thermophiles[J].Minerals Engineering,2013,48:31-35
    [20]Ahmadi A,Schaffie M,Petersen J,et al.Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density[J].Hydrometallurgy,2011,106(1/2):84-92
    [21]Liu HC,Nie ZY,Xia JL,et al.Investigation of copper,iron and sulfur speciation during bioleaching of chalcopyrite by moderate thermophile Sulfobacillus thermosulfidooxidans[J].International Journal of Mineral Processing,2015,137:1-8
    [22]Liang CL,Xia JL,Yang Y,et al.Characterization of the thermo-reduction process of chalcopyrite at 65°C by cyclic voltammetry and XANES spectroscopy[J].Hydrometallurgy,2011,107(1/2):13-21
    [23]Liu HC,Xia JL,Nie ZY.Relatedness of Cu and Fe speciation to chalcopyrite bioleaching by Acidithiobacillus ferrooxidans[J].Hydrometallurgy,2015,156:40-46
    [24]Zeng WM,Qiu GZ,Chen M.Investigation of Cu-S intermediate species during electrochemical dissolution and bioleaching of chalcopyrite concentrate[J].Hydrometallurgy,2013,134-135(3):158-165
    [25]Khoshkhoo M,Dopson M,Shchukarev A,et al.Chalcopyrite leaching and bioleaching:an X-ray photoelectron spectroscopic(XPS)investigation on the nature of hindered dissolution[J].Hydrometallurgy,2014,149:220-227
    [26]Liang CL,Xia JL,Nie ZY,et al.Effect of initial p H on chalcopyrite oxidation dissolution in the presence of extreme thermophile Acidianus manzaensis[J].Transactions of Nonferrous Metals Society of China,2014,24(6):1890-1897
    [27]Gu GH,Hu KT,Zhang X,et al.The stepwise dissolution of chalcopyrite bioleached by Leptospirillum ferriphilum[J].Electrochimica Acta,2013,103:50-57
    [28]Liu HC,Xia JL,Nie ZY,et al.Bioleaching of chalcopyrite by Acidianus manzaensis under different constant p H[J].Minerals Engineering,2016,98:80-89
    [29]Liang CL,Xia JL,Nie ZY,et al.Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis[J].Bioresource Technology,2012,110:462-467
    [30]Wang J,Gan XW,Zhao HB,et al.Dissolution and passivation mechanisms of chalcopyrite during bioleaching:DFT calculation,XPS and electrochemistry analysis[J].Minerals Engineering,2016,98:264-278
    [31]Yang Y,Liu WH,Chen M.XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30°C and 48°C[J].Minerals Engineering,2015,70:99-108
    [32]Xia JL,Liu HC,Nie ZY,et al.Characterization of microbe-mineral interfacial interaction based on synchrotron radiation techniques[J].Advanced Materials Research,2015,1130:123-126
    [33]He H,Xia JL,Huang GH,et al.Analysis of the elemental sulfur bio-oxidation by Acidithiobacillus ferrooxidans with sulfur K-edge XANES[J].World Journal of Microbiology and Biotechnology,2011,27(8):1927-1931
    [34]Nie ZY,Liu HC,Xia JL,Z et al.Differential utilization and transformation of sulfur allotropes,μ-S andα-S8,by moderate thermoacidophile Sulfobacillus thermosulfidooxidans[J].Research in Microbiology,2014,165(8):639-646
    [35]Liu HC,Xia JL,Nie ZY,et al.Comparative study of sulfur utilization and speciation transformation of two elemental sulfur species by thermoacidophilic archaea Acidianus manzaensis YN-25[J].Process Biochemistry,2013,48(12):1855-1860
    [36]Liu HC,Xia JL,Nie ZY,et al.Differential utilization and speciation transformation of orthorhombicα-S8 and amorphousμ-S by substrate-acclimated mesophilic Acidithiobacillus ferrooxidans[J].Transactions of Nonferrous Metals Society of China,2015,25(9):3096-3102
    [37]Peng AA,Xia JL,Liu HC,et al.Differential utilization of cyclic,orthorhombicα-and chain-like polymericμ-sulfur by Acidithiobacillus ferrooxidans[J].Transactions of Nonferrous Metals Society of China,2014,24(5):1562-1570
    [38]Xia JL,Liu HC,Nie ZY,et al.Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe2+and S0[J].Journal of Microbiological Methods,2013,94(3):257-261
    [39]Liu HC,Xia JL,Nie ZY,et al.Differential expression of extracellular thiol groups of moderately thermophilic Sulfobacillus thermosulfidooxidans and extremely thermophilic Acidianus manzaensis grown on S0 and Fe2+[J].Archives of Microbiology,2015,197(6):823-831
    [40]Nie ZY,Liu HC,Xia JL,et al.Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process[J].Bio Metals,2016,29(1):25-37
    [41]Romo E,Weinacker DF,Zepeda AB,et al.Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite[J].Brazilian Journal of Microbiology,2013,44(2):523-528
    [42]Lara RH,García-Meza JV,Cruz R,et al.Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans[J].Applied Microbiology and Biotechnology,2011,95(3):799-809
    [43]García-Meza JV,Fernández JJ,Lara RH,et al.Changes in biofilm structure during the colonization of chalcopyrite by Acidithiobacillus thiooxidans[J].Applied Microbiology and Biotechnology,2013,97(13):6065-6075
    [44]Zhu W,Xia JL,Peng AA,et al.Characterization of apparent sulfur oxidation activity of thermophilic archaea in bioleaching of chalcopyrite[J].Transactions of Nonferrous Metals Society of China,2013,23(8):2383-2388
    [45]More TT,Yadav JSS,Yan S,et al.Extracellular polymeric substances of bacteria and their potential environmental applications[J].Journal of Environmental Management,2014,144:1-25
    [46]Flemming HC,Wingender J.The biofilm matrix[J].Nature Reviews Microbiology,2010,8(9):623-633
    [47]Li Q,Sand W,Zhang RY.Enhancement of biofilm formation on pyrite by Sulfobacillus thermosulfidooxidans[J].Minerals,2016,6(3):71
    [48]Solís M,Solís A,Pérez HI,et al.Microbial decolouration of azo dyes:a review[J].Process Biochemistry,2012,47(12):1723-1748
    [49]Ha JY,Gélabert A,Spormann AM,et al.Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis:batch uptake,thermodynamic modeling,ATR-FTIR,and EXAFS study[J].Geochimica et Cosmochimica Acta,2010,74(1):1-15
    [50]Bautista BET,Wikie?AJ,Datsenko I,et al.Influence of extracellular polymeric substances(EPS)from Pseudomonas NCIMB 2021 on the corrosion behaviour of 70Cu-30Ni alloy in seawater[J].Journal of Electroanalytical Chemistry,2015,737:184-197
    [51]Pan XL,Liu J,Zhang DD,et al.Binding of dicamba to soluble and bound extracellular polymeric substances(EPS)from aerobic activated sludge:a fluorescence quenching study[J].Journal of Colloid and Interface Science,2010,345(2):442-447
    [52]Rao KH,Vilingska A,Chernyshova IV.Minerals bioprocessing:R&D needs in mineral biobeneficiation[J].Hydrometallurgy,2010,104(3/4):465-470
    [53]Nkulu G,Gaydardzhiev S,Mwema E,et al.SEM and EDS observations of carrollite bioleaching with a mixed culture of acidophilic bacteria[J].Minerals Engineering,2015,75:70-76
    [54]García-Meza JV,Lara RH,Navarro-Contreras HRN.Application of raman spectroscopy to the biooxidation analysis of sulfide Minerals[J].International Journal of Spectroscopy,2012,2012:501706
    [55]Reddy GU,Seshamaheswaramma K,Nakamura Y,et al.Electron paramagnetic resonance,optical absorption and Raman spectral studies on a pyrite/chalcopyrite mineral[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,96:310-315
    [56]Lalla EA,Lopez-Reyes G,Sansano A,et al.Raman-IR vibrational and XRD characterization of ancient and modern mineralogy from volcanic eruption in Tenerife Island:Implication for Mars[J].Geoscience Frontiers,2016,7(4):673-681
    [57]Hollricher O,Schmidt U,Breuninger S.RISE microscopy:correlative Raman-SEM imaging[J].Microscopy Today,2014,22(6):36-39
    [58]Liu Y,Dang Z,Lu GN,et al.Utilization of electrochemical impedance spectroscopy for monitoring pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans[J].Minerals Engineering,2011,24(8):833-838
    [59]Fu KB,Lin H,Mo XL,et al.Comparative study on the passivation layers of copper sulphide minerals during bioleaching[J].International Journal of Minerals,Metallurgy,and Materials,2012,19(10):886-892
    [60]Bharadwaj A,Ting YP.Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi:leaching mechanism and effect of decoking[J].Bioresource Technology,2013,130:673-680
    [61]Takatsugi K,Sasaki K,Hirajima T.Mechanism of the enhancement of bioleaching of copper from enargite by thermophilic iron-oxidizing archaea with the concomitant precipitation of arsenic[J].Hydrometallurgy,2011,109(1/2):90-96
    [62]Klauber C.A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution[J].International Journal of Mineral Processing,2008,86(1/4):1-17
    [63]Cuisinier M,Cabelguen PE,Evers S,et al.Sulfur speciation in Li-S batteries determined by operando X-ray absorption spectroscopy[J].The Journal of Physical Chemistry Letters,2013,4(19):3227-3232
    [64]Reith F,Zammit CM,Rogers SL,et al.Potential utilisation of micro-organisms in gold processing:a review[J].Mineral Processing and Extractive Metallurgy,2012,121(4):251-260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700