用户名: 密码: 验证码:
热压成型参数对非球面透镜轮廓偏差的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Molding Parameters on Profile Deviation of Aspheric Lenses
  • 作者:朱科军 ; 欧阳波 ; 许博文 ; 徐志强 ; 张高峰
  • 英文作者:ZHU Ke-jun;OUYANG Bo;XU Bo-wen;XU Zhi-qiang;ZHANG Gao-feng;School of Mechanical Engineering, Xiangtan University;Engineering Research Center for Complex Track Processing Technology and Equipment of Ministry of Education;
  • 关键词:玻璃热压成型 ; 非球面玻璃透镜 ; 轮廓偏差 ; 数值模拟 ; 正交优化分析
  • 英文关键词:glass molding;;aspherical glass lens;;profile deviation;;numerical simulation;;orthogonal optimization analysis
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:湘潭大学机械工程学院;复杂轨迹加工工艺及装备教育部工程研究中心;
  • 出版日期:2018-07-20
  • 出版单位:表面技术
  • 年:2018
  • 期:v.47
  • 基金:国家自然科学基金项目(51775469,51605410);; 湖南省自然科学基金项目(2015JJ3117);; 湖南省教育厅项目(16C1549)~~
  • 语种:中文;
  • 页:BMJS201807010
  • 页数:6
  • CN:07
  • ISSN:50-1083/TG
  • 分类号:79-84
摘要
目的研究玻璃热压成型参数对非球面玻璃透镜轮廓偏差的影响。方法设计正交试验,并通过Msc.Marc软件对玻璃透镜热压成型过程进行数值模拟,在不同热压成型参数组合下,测量透镜轮廓偏差的大小,从而得到最佳热压成型参数组合。接着进行透镜热压试验,观察成型透镜形状与设计值间的偏差,验证仿真分析结果。结果经正交优化分析,热压温度为570℃时,最大轮廓偏差均值为2.876μm;热压速率为0.02 mm/s时,最大轮廓偏差均值为2.808μm;摩擦因数为0.6时,最大轮廓偏差均值为2.780μm;退火速率为1.5℃/s时,最大轮廓偏差均值为1.893μm;保持压力为700 N时,最大轮廓偏差均值为1.775μm;冷却速率为1℃/s时,最大轮廓偏差均值为1.990μm。它们在各自参数组别中都为最小值。优化成型参数组合为:热压温度570℃,热压速率0.02 mm/s,摩擦因数0.6,网格大小0.05 mm,退火速率1.5℃/s,保持压力700 N,冷却速率3℃/s。热压试验测得最大偏差值为1.61μm。结论离透镜中心越远,透镜表面的轮廓偏差越大。热压模型网格划分越细,越能准确地模拟玻璃热压成型过程。热压速率增大时,透镜的轮廓偏差会增大。热压温度升高,透镜的轮廓偏差会减小,但过高的热压温度会使轮廓偏差变大。退火速率、保持压力、摩擦因数增大时,透镜的轮廓偏差会减小,冷却速率对轮廓偏差无明显影响。
        The work aims to study the effects of glass molding parameters on profile deviation of aspherical glass lenses. Orthogonal test was designed, numerical model of the glass lens molding process was established through Msc.Marc software. The deviation of lens profile was measured in different combinations of molding parameters so as to obtain the optimum combination of molding parameters. Then molding test was applied to the lens, the deviation between finished lens shape and design value was observed to verify simulation analysis results. According to orthogonal optimization analysis, average value of the maximum profile deviation was 2.876 μm at the molding temperature of 570 ℃, 2.808 μm at the molding rate of 0.02 mm/s, 2.780 μm at the friction coefficient of 0.6, 1.893 μm at the annealing rate of 1.5 ℃/s, 1.775 μm at the constant pressure of 700 N, and 1.990 μm at the cooling rate of 1 ℃/s. All of them were the minimum in corresponding group of parameters. The optimum combination of modeling parameters was as follows: molding temperature as 570 ℃, molding rate as 0.02 mm/s, friction factor as 0.6, grid size as 0.05 mm, annealing rate as 1.5 ℃/s, dwell pressure as 700 N and cooling rate as 3 ℃/s. The maximum deviation measured in molding test was 1.61 μm. The farther it is from the lens center, the larger the profile deviation of the lens surface is. The finer meshes can more accurately simulate glass molding process. The lens profile deviation will increase with the increase of molding rate, and decrease with the increase of molding temperature. However, the profile deviation will increase if the molding temperature is over-high, and the profile deviation will decrease with the increase of annealing rate, dwell pressure and friction coefficient. Cooling rate has no significant effect on profile deviation.
引文
[1]尹韶辉,朱科军,余剑武,等.小口径非球面玻璃透镜模压成形[J].机械工程学报,2012,48(15):182-192.YIN Shao-hui,ZHU Ke-jun,YU Jian-wu,et al.Micro Aspheric Glass Lens Molding Process[J].Journal of Mechanical Engineering,2012,48(15):182-192.
    [2]ZHANG L,LIU W.Precision Glass Molding:Toward an Optimal Fabrication of Optical Lenses[J].Frontiers of Mechanical Engineering,2017,12(1):3-17.
    [3]CHEN Y,YI A.Design and Fabrication of Freeform Glass Concentrating Mirrors Using a High Volume Thermal Slumping Process[J].Solar Energy Materials and Solar Cells,2011,95(7):1654-1664.
    [4]陈逢军,唐宇,苗想亮,等.磨料射流表面抛光研究综述[J].表面技术,2015,44(11):119-127.CHEN Feng-jun,TAGN Yu,MIAO Xiang-liang,et al.Review on the Abrasive Jet Surface Polishing(AJP)Technology[J].Surface Technology,2015,44(11):119-127.
    [5]YI A Y,JAIN A.Compression Molding of Aspherical Glass Lenses—A Combined Experimental and Numerical Analysis[J].Journal of the American Ceramic Society,2005,88(3):579-586.
    [6]LI Hui,LI Li-kai,NAPLES N J,et al.Micro-optical Fabrication by Ultraprecision Diamond Machining and Precision Molding[J].Frontiers of Mechanical Engineering,2017,12(2):181-192.
    [7]尹韶辉,徐志强,陈逢军,等.小口径非球面斜轴磁流变抛光技术[J].机械工程学报,2013,49(17):33-38.YIN Shao-hui,XU Zhi-qiang,CHEN Feng-jun,et al.Inclined Axis Magnetorheological Finishing Technology for Small Aspherical Surface[J].Journal of Mechanical Engineering,2013,49(17):33-38.
    [8]ZHANG X,YIN S.Study on High-temperature Glass Lens Molding Process Using FEM Simulation[J].Open Materials Science Journal,2015,9(1):14-19.
    [9]YAN J,ZHOU T,MASUDA J,et al.Modeling Hightemperature Glass Molding Process by Coupling Heat Transfer and Viscous Deformation Analysis[J].Precision Engineering,2009,33(2):150-159.
    [10]ZHOU T,LIU X,LIANG Z,et al.Recent Advancements in Optical Microstructure Fabrication through Glass Molding Process[J].Frontiers of Mechanical Engineering,2017,12(1):46-65.
    [11]LIU W,SHEN P,JIN N.Viscoelastic Properties of Chalcogenide Glasses and the Simulation of Their Molding Processes[J].Physics Procedia,2011,19:422-425.
    [12]ZHOU T,YAN J,LIANG Z,et al.Development of Polycrystalline Ni-P Mold by Heat Treatment for Glass Microgroove Forming[J].Precision Engineering,2015,39:25-30.
    [13]SU L,WANG F,HE P,et al.An Integrated Solution for Mold Shape Modification in Precision Glass Molding to Compensate Refractive Index Change and Geometric Deviation[J].Optics&Lasers in Engineering,2014,53(2):98-103.
    [14]TAO B,HE P,SHEN L,et al.Annealing of Compression Molded Aspherical Glass Lenses[J].Journal of Manufacturing Science and Engineering,2014,136(1):011008.
    [15]张小兵,尹韶辉,朱科军,等.基于广义Maxwell模型的非球面光学镜片成型模拟[J].材料导报,2013,27(10):148-152.ZHANG Xiao-bing,YIN Shao-hui,ZHU Ke-jun,et al.Simulation of Compression Molding Aspherical Glass Lenses Based on Generalized Maxwell Model[J].Materials Review,2013,27(10):148-152.
    [16]朱科军,尹韶辉,余剑武,等.非球面玻璃透镜模压成形有限元分析[J].中国机械工程,2013,24(18):2509-2514.ZHU Ke-jun,YIN Shao-hui,YU Jian-wu,et al.Finite Element Analysis on Aspherical Glass Lens Molding Process[J].China Mechanical Engineering,2013,24(18):2509-2514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700