用户名: 密码: 验证码:
聚二甲基硅氧烷微流道中光流控荧光共振能量转移激光
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optofluidic fluorescence resonance energy transfer lasing in a polydimethylsiloxane microfluidic channel
  • 作者:李东阳 ; 张远宪 ; 欧永雄 ; 普小云
  • 英文作者:Li Dong-Yang;Zhang Yuan-Xian;Ou Yong-Xiong;Pu Xiao-Yun;Depatment of Physics, Yunnan University;
  • 关键词:光流控激光器 ; 荧光共振能量转移 ; 消逝波
  • 英文关键词:optofluidic laser;;fluorescence resonance energy transfer;;evanescent wave
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:云南大学物理系;
  • 出版日期:2019-02-28 16:02
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11864045,11404282,61465014,61465015);; 云南省中青年学术和技术带头人(后备人才)(批准号:2018HB029);; 国家留学基金资助的课题~~
  • 语种:中文;
  • 页:WLXB201905016
  • 页数:7
  • CN:05
  • ISSN:11-1958/O4
  • 分类号:134-140
摘要
将单一折射率的石英裸光纤植入由聚二甲基硅氧烷构成的基片微流道中,以低折射率的罗丹明B(RhB)和吡啶821(LDS821)乙醇溶液构成的供体和受体对作为激光增益介质.采用沿光纤轴向消逝波抽运方式,首先以波长为532nm的连续波激光器作为激励光,对荧光共振能量转移特性参数进行了研究.然后以波长为532nm的脉冲激光器作为抽运光,通过直接激励供体分子RhB,并将其能量转移给临近的受体分子LDS821,在不改变抽运光波长的条件下,实现了较低阈值(1.26μJ/mm~2)的受体LDS821激光辐射.
        A bare quartz fiber with single refractive index is implanted into a polydimethylsiloxane(PDMS)microfluidic channel. The lasing gain medium consists of fluorescence resonance energy transfer(FRET) donoracceptor dye pair Rhodamine B(RhB)-LDS821 mixture solution, which has a lower refractive index than that of the optical fiber and flows in the PDMS microfluidic channel. The circular cross section of the optical fiber forms a ring resonator and hosts high-quality(Q) whispering gallery modes(WGMs). Pumping along the optical fiber axis, the FRET characteristic parameters, i.e., the FRET efficiency η and the F?rster distance R0 of donor-acceptor dye pair, are firstly studied by using a continuous wave laser as a pump light source with a wavelength of 532 nm. The excited states are thencreated in the donor(RhB) by using a pulse laser with a wavelength of 532 nm and whose energy is transferred into the adjacent acceptor(LDS821) through the nonradiative FRET mechanism. Finaly, the emission of LDS821 iscoupled into the WGM of the ring resonator to lase. Due to the high energy transfer efficiency and high Q-factor, the acceptor shows a lasing threshold as low as 1.26 μJ/mm~2.
引文
[1]Li Z,Psaltis D 2008 Microfluid.Nanofluid.4 145
    [2]Holger S,Aaron R H 2011 Nat.Photon.5 598
    [3]Chen Q,Zhang X,Sun Y,Ritt M,Sivaramakrishnan S,Fan X 2013 Lab on a Chip 13 2679
    [4]Wang C S,Chang T Y,Lin T Y,Chen Y F 2014 Sci.Reports4 6736
    [5]Li J,Li M M,Sun L P,Fan P C,Ran Y,Jin L,Guan B O2017 Acta Phys.Sin.66 074209(in Chinese)[李杰,李蒙蒙,孙立朋,范鹏程,冉洋,金龙,关柏鸥2017物理学报66 074209]
    [6]Mellors J S,Jorabchi K,Smith L M,Ramsey M 2010 Anal.Chem.82 967
    [7]Vahala K J 2003 Nature 424 839
    [8]Humar M,Yun S H 2015 Nat.Photon.27 572
    [9]Zhang Y X,Meng W D,Yang H Y,Pu X Y 2015 Opt.Lett.40 5101
    [10]Cerdán L,Enciso E,Martín V 2012 Nat.Photon.6 621
    [11]F?rster T 1959 Discuss Faraday Soc.27 7
    [12]Ozelci E,Aas M,Jonas A,Kiraz A 2014 Laser Phys.Lett.11045802
    [13]Armstrong R L,Xie J G,Ruekgauer T E 1992 Opt.Lett.17943
    [14]Maslov V V 2008 4th International Conference on Advance Optoelectronics&Lasers Alushta,Crimea,Ukraine,September 29-October 4,2008 p366
    [15]Shopova S I,Cupps J M,Zhang P,Henderson E P,Lacey S,Fan X D 2008 Opt.Express 15 12735
    [16]Sun Y,Shopova S I,Wu C S 2010 Proc.Natl.Sci.Acad.USA 107 16039
    [17]Zhang Y X,Pu X Y,Zhu K,Feng L 2011 J.Opt.Soc.Am.B 28 2048
    [18]Sahoo H 2011 J.Photochem.Photobiol.C:Photochem.Rev.12 20
    [19]Brackmann U 2000 Goettingen Lambda Physik Gmbh 1
    [20]Stryer L,Haugland R P 1967 Proc.Natl.Sci.Acad.USA 58719
    [21]Li Z,Psaltis D 2007 J.Sel.Top.Quantum Electron.13 185
    [22]Zhang Y X,Pu X Y,Feng L,Han D Y,Ren Y T 2013 Opt.Express 21 12617
    [23]Bene L,Ungvári T,Fedor R,Damjanovich L 2014 Biochim.Biophys.Acta 1843 3047
    [24]Du J,Zhu T,Ma W,Cao W,Gu Q,Fan J,Peng X 2017 Ind.Eng.Chem.Res.56 10591

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700