用户名: 密码: 验证码:
新型光谱测量技术发展综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development review of new spectral measurement technology
  • 作者:柏连发 ; 王旭 ; 韩静 ; 赵壮
  • 英文作者:Bai Lianfa;Wang Xu;Han Jing;Zhao Zhuang;School of Electronic Engineering and Photoelectric Technology,Nanjing University of Science and Technology;
  • 关键词:光谱测量 ; 压缩感知 ; 哈达玛变换 ; 傅里叶变换
  • 英文关键词:spectral measurement;;compressive sensing;;Hadamard transform;;Fourier transform
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:南京理工大学电子工程与光电技术学院;
  • 出版日期:2019-06-25
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.296
  • 基金:国家重大科研仪器研制项目(61727802)
  • 语种:中文;
  • 页:HWYJ201906002
  • 页数:11
  • CN:06
  • ISSN:12-1261/TN
  • 分类号:11-21
摘要
光谱测量技术在无损检测、地质勘探、农业普查等诸多方面均有广泛应用,且随着技术的发展,相关工艺器件近几年得到了长足的进步。在结合实际应用需求的前提下,比较全面地介绍了光谱测量技术的发展历史,以及近年来相关技术的研究现状和发展动态。并且从传统型、计算型、多路复用型三个角度较详细地总结了目前光谱测量的主要形式。着重介绍了包括计算层析、压缩感知、傅里叶变换、哈达码变换等多种光谱测量技术的原理及实现方法,并分别总结了优缺点。对目前光谱测量技术中亟待解决的问题进行了分析总结,对未来光谱测量手段的发展进行了展望。
        Spectral measurement technology has been widely used in non-destructive test, geological prospecting, agriculture and many other fields, and the related technology and devices have achieved great progress in recent years. So spectral measurement technology has developed rapidly in recent years. Based on practical application requirements, the development history of spectral measurement technology was introduced comprehensively and the main spectral measurements including traditional, computational and multiplexing were summarized. The theory and implementation of computational tomography, compressive sensing, Fourier transform, Hadamard transform were introduced in detail and corresponding advantages and disadvantages were pointed out. At last, the problems that need to be solved urgently in spectral measurement technology were analyzed and summarized, and the future development of spectral measurement methods was prospected.
引文
[1]Zhao Z,Deng L,Bai L,et al.Optimal imaging band selection mechanism of weld pool vision based on spectrum analysis[J].Optics&Laser Technology,2019,110:145-151.
    [2]Sperling Brent A,John Hoang,William A Kimes,et al.Time-resolved surface infrared spectroscopy during atomic layer deposition[J].Applied Spectroscopy,2013,67(9):1003-1012.
    [3]Yoshida Y,Oguma H,Morino I,et al.Mountaintop observation of CO2absorption spectra using a short wavelength infrared Fourier transform spectrometer[J].Applied Optics,2010,49(1):71-79.
    [4]O′brien C M,Vargis E,Rudin A,et al.In vivo Raman spectroscopy for biochemical monitoring of the human cervix throughout pregnancy[J].American Journal of Obstetrics and Gynecology,2018,218(5):528.e.
    [5]Ai Y,Liang P,Wu Y,et al.Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering(SERS)[J].Food Chemistry,2018,241:427-433.
    [6]Golay M J E.Multi-slit spectrometry[J].Journal of the Optical Society of America,1949,39(6):437-444.
    [7]Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
    [8]Labaw C.Airborne imaging spectrometer:an advanced concept instrument[C]//Proceedings of SPIE,1984,430:68-75.
    [9]Green R O,Chrien T G,Nielsen P J,et al.Airborne visible/infrared imaging spectrometer(AVIRIS):recent improvements to the sensor and data facility[C]//Proceedings of SPIE,1993,1937:180-190.
    [10]Babey S K,Anger C D.Compact airborne spectrographic imager(CASI):a progress review[C]//Proceedings of SPIE,1993,1937:152-164.
    [11]Braam B M,Okkonen J T,Aikio M,et al.Design and first test results of the Finnish airborne imaging spectrometer for different applications(AISA)[C]//Proceedings of SPIE,1993,1937:142-152.
    [12]Rickard L J,Basedow R W,Zalewski E F,et al.HYDICE:An airborne system for hyperspectral imaging[C]//Proceedings of SPIE,1993,1937:173-180.
    [13]Shimota A,Kobayashi H,Kadokura S.Radiometric calibration for the airborne interferometric monitor for greenhouse gases simulator[J].Applied Optics,1999,38(3):571-576.
    [14]Cocks T,Jenssen R,Stewart A,et al.The HyMapTMairborne hyperspectral sensor:the system,calibration and performance[C]//Proc of the 1st EarseL workshop on Imaging Spectroscopy,1998,5:37-42.
    [15]Agar B,Coulter D.Remote sensing for mineral explorationA decade perspective 1997-2007[C]//Proceedings of Exploration,2007,7:109-136.
    [16]Barnsley M J,Settle J J,Cutter M A,et al.The PROBA/CHRIS mission:A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(7):1512-1520.
    [17]Tong Qingxi,Zhang Bing,Zheng Lan.Hyperspectral Remote Sensing[M].Beijing:Higher Education Press,2006.(in Chinese)
    [18]Gao Hengzhen.Research on classification technique for Hyperspectral remote sensing imagery[D].Changsha:National University of Defense Technology,2011.(in Chinese)
    [19]Han Z,Jin Y,Yun C.Spatial and temporal distributions of suspended sediment contents in the Yangtze River Estuary using the CMODIS image data from China′s SZ-3Spacecraft[J].Journal of Remote Sensing,2006,10(3):381-386.(in Chinese)
    [20]Zhao B,Yang J,Chang L,et al.Optical design and on-orbit performance evaluation of the imaging spectrometer for Chang'e-1 lunar satellite[J].Acta Photonica Sinica,2009,38(3):479-483.(in Chinese)
    [21]Descour M,Dereniak E.Computed-tomography imaging spectrometer:experimental calibration and reconstruction results[J].Applied Optics,1995,34(22):4817-4826.
    [22]Cimino P,Neese F,Barone V.Computational spectroscopy:methods,experiments and applications[J].Materialstoday,2010,13(2):55.
    [23]Wei R,Zhou J,Jing J,et al.Developments and trends of the computed tomography imaging spectrometers[J].Spectroscopy and Spectral Analysis,2010,30(10):2866-2873.(in Chinese)
    [24]Okamoto T,Yamaguchi I.Simultaneous acquisition of spectral image information[J].Optics Letters,1991,16(16):1277-1279.
    [25]Mooney J M,Vickers V E,An M,et al.High-throughput hyperspectral infrared camera[J].Journal of the Optical Society of America A,1997,14(11):2951-2961.
    [26]Fang J,Zhao D,Jiang Y.A new method in imaging spectrometry[C]//Proceedings of SPIE,2002,4922:56-62.
    [27]Hagen N,Dereniak E L.Analysis of computed tomographic imaging spectrometers.I.Spatial and spectral resolution[J].Applied Optics,2008,47(28):F85-F95.
    [28]Candes E J,Tao T.Decoding by linear programming[J].IEEE Transactions on Information Theory,2005,51(12):4203-4215.
    [29]Candès E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
    [30]Brady D J,Gehm M E.Compressive imaging spectrometers using coded apertures[C]//Visual Information Processing,2006,6246:62460A.
    [31]Gehm M E,John R,Brady D J,et al.Single-shot compressive spectral imaging with a dual-disperser architecture[J].Optics Express,2007,15(21):14013-14027.
    [32]Wagadarikar A,John R,Willett R,et al.Single disperser design for coded aperture snapshot spectral imaging[J].Applied Optics,2008,47(10):B44-B51.
    [33]Galvis L,Arguello H,Arce G R.Coded aperture design in mismatched compressive spectral imaging[J].Applied Optics,2015,52(10):2153-2162.
    [34]Parada A,Arce G R.Spectral Super-resolution in colored coded aperture spectral imaging[J].Imaging and Applied Optics,2015,2(4):440-455.
    [35]Ma Y,Lv Q,Liu Y,et al.Effect evaluation of optical magnification errors for coded aperture spectrometer[J].Spectroscopy and Spectral Analysis,2014,34(11):3157-3161.(in Chinese)
    [36]Lou J,Li Y,Xiong L.Catadioptric omnidirectional compressive imaging based on coded aperture[J].Acta Optica Sinica,2016,36(4):0411004.(in Chinese)
    [37]Kazemzadeh F,Wong A.Resolution-and throughput-enhanced spectroscopy using a high-throughput computational slit[J].Optics Letters,2016,41(18):4352-4355.
    [38]Ma X,Wang H,Wang Y,et al.Improving the resolution and the throughput of spectrometers by a digital projection slit[J].Optics Express,2017,25(19):23045-23050.
    [39]Yue J,Han J,Zhang Y,et al.High-throughput deconvolution-resolved computational spectrometer[J].Chinese Optics Letters,2014,12(4):043001.
    [40]Gehm M E,McCain S T,Pitsianis N P,et al.Static twodimensional aperture coding for multimodal,multiplex spectroscopy[J].Applied Optics,2006,45(13):2965-2974.
    [41]Fernandez C A,Guenther B D,Gehm M E,et al.Longwave infrared(LWIR)coded aperture dispersive spectrometer[J].Optics Express,2007,15(9):5742-5753.
    [42]Zhou Y,Rushforth C K.Least-squares reconstruction of spatially limited objects using smoothness and non-negativity constraints[J].Applied Optics,1982,21(7):1249-1252.
    [43]Wagadarikar A A,Gehm M E,Brady D J.Performance comparison of aperture codes for multimodal,multiplex spectroscopy[J].Applied Optics,2007,46(22):4932-4942.
    [44]Kong Y,Liang J,Wang B,et al.The investigation and simulation of a novel spatially modulated micro-fourier transform spectrometer[J].Spectroscopy and Spectral Analysis,2009,29(4):1142-1146.
    [45]Lv J,Liang J,Liang Z.Theoretical analysis on stationary Gaussian random noise in narrowband Fourier transform spectrometer[J].Acta Physica Sinic a,2012,61(7):89-96.(in Chinese)
    [46]Jin W,Liang J,Liang Z,et al.Development of micro fourier transform spectrometer[J].Microprocessors,2017,38(3):52-59.(in Chinese)
    [47]Courtial J,Patterson B A,Harvey A R,et al.Design of a static Fourier-transform spectrometer with increased field of view[J].Applied Optics,1996,35(34):6698-6702.
    [48]Zhan G.Static Fourier-transform spectrometer with spherical reflectors[J].Applied Optics,2002,41(3):560-563.
    [49]Wang H,Lv J,Liang J,et al.Design and analysis of medium wave infrared miniature atatic Fourier transform spectrometer[J].Acta Physica Sinica,2018,67(6):060702.(in Chinese)
    [50]Li W,Lu Q,Song Y,et al.Reflective static fourier spectrometer optical system based on double right-angle beam splitter[J].Acta Optica Sinica,2017,37(8):0812004.(in Chinese)
    [51]Li J,Lu D,Qi Z.End-face reflected LiNbO3waveguide based stationary miniature Fourier transform spectrometer with two-fold enhanced spectral resolution[J].Acta Physica Sinica,2014,64(11):114207.(in Chinese)
    [52]Hammaker R M,DeVerse R A,Asunskis D J,et al.Handbook of Vibrational Spectroscopy[M].New Jersey:John Wiley&Sons,Ltd,2006.
    [53]Rose B,Rasmussen M,Herholdt-Rasmussen N,et al.Programmable spectroscopy enabled by DLP[C]//Proceedings of SPIE,2015,9376:93760I.
    [54]Xu J,Zhu Z,Liu C,et al.The processing method of spectral data in Hadamard transforms spectral imager based on DMD[J].Optics Communications,2014,325:122-128.
    [55]Zhang H.Research on key technologies for coded aperture imaging spectrometer based on DMD[D].Beijing:University of Chinese Academy of Science,2016.(in Chinese)
    [56]Zhang R,Pan M,Yang J,et al.Optical system of echelle spectrometer based on DMD[J].Optics and Precision Engineering,2017,25(12):2994-3000.(in Chinese)
    [57]Xu J,Liu Z,Jiang N,et al.Hadamard transform spectral imager of adaptive spectral resolution based on DMD[J].Spectroscopy and Spectral Analysis,2013,33(7):2006-2009.(in Chinese)
    [58]Love S P,Graff D L.Full-frame programmable spectral filters based on micromirror arrays[J].Journal of Micro/Nanolithography,MEMS,and MOEMS,2014,13(1):011108.
    [59]Chi M,Wu Y,Qian F,et al.Signal-to-noise ratio enhancement of a Hadamard transform spectrometer using a two-dimensional slit-array[J].Applied Optics,2017,56(25):7188-7193.
    [60]Wang Z,Yue J,Han J,et al.High-SNR spectrum measurement based on Hadamard encoding and sparse reconstruction[J].Applied Physics B,2017,123(12):277-284.
    [61]Yue J,Han J,Zhang Y,et al.Denoising analysis of Hadamard transform spectrometry[J].Optics Letters,2014,39(13):3744-3747.
    [62]Yue J,Han J,Li L,et al.Denoising analysis of spatial pixel multiplex coded spectrometer with Hadamard H-matrix[J].Optics Communications,2018,407:355-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700