用户名: 密码: 验证码:
一类高振荡随机哈密顿系统的李代数方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Lie algebraic approach for a class of highly oscillatory stochastic Hamiltonian systems
  • 作者:阮家麟 ; 王丽瑾
  • 英文作者:RUAN Jialin;WANG Lijin;School of Mathematical Sciences,University of Chinese Academy of Sciences;
  • 关键词:随机微分方程数值解 ; 随机哈密顿系统 ; 高振荡随机微分方程 ; 算子分裂方法 ; 李代数方法
  • 英文关键词:numerical solutions of stochastic differential equations;;stochastic Hamiltonian systems;;highly oscillatory SDEs;;operator splitting methods;;Lie algebraic approach
  • 中文刊名:ZKYB
  • 英文刊名:Journal of University of Chinese Academy of Sciences
  • 机构:中国科学院大学数学科学学院;
  • 出版日期:2019-01-15
  • 出版单位:中国科学院大学学报
  • 年:2019
  • 期:v.36
  • 基金:the National Nature Science Foundation of China(11471310,11071251)
  • 语种:英文;
  • 页:ZKYB201901002
  • 页数:6
  • CN:01
  • ISSN:10-1131/N
  • 分类号:8-13
摘要
为一类高振荡随机哈密顿系统提出一种李代数数值方法。对一个具体的高振荡随机哈密顿系统,给出两个基于李代数方法的数值格式,并证明它们近似保辛结构。通过数值实验展示这两种格式的根均方收敛阶,以及它们在数值求解该高振荡随机哈密顿系统中的有效性和优越性。
        In this work,we propose a Lie algebraic approach for numerically solving a class of highly oscillatory stochastic Hamiltonian systems( SHSs). For a concrete highly oscillatory SHS,we construct two numerical schemes based on the Lie algebraic approach, and prove their near preservation of the symplecticity. We also show by numerical tests their root mean-square convergence orders,as well as their effectiveness and merits in solving the highly oscillatory SHS.
引文
[1] Higham D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. SIAM review, 2001, 43(3): 525-546.
    [2] Misawa T. A Lie algebraic approach to numerical integration of stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2001, 23(3): 866-890.
    [3] Feng K, Qin M. Symplectic geometric algorithms for hamiltonian systems[M]. Berlin: Springer, 2010.
    [4] Milstein G N, Repin Y M, Tretyakov M V. Symplectic integration of Hamiltonian systems with additive noise[J]. SIAM Journal on Numerical Analysis, 2002,39(6): 2 066-2 088.
    [5] Milstein G N, Repin Y M, Tretyakov M V. Numerical methods for stochastic systems preserving symplectic structure[J]. SIAM Journal on Numerical Analysis, 2002, 40(4): 1 583-1 604.
    [6] Kloeden P E, Platen E. Numerical solution of stochastic differential equations[M]. Springer-Verlag, 1992.
    [7] Milstein G N. Numerical integration of stochastic differential equations[M]. Springer Science & Business Media, 1994.
    [8] Milstein G N, Tretyakov M V. Stochastic numerics for mathematical physics[M]. Springer Science & Business Media, 2013.
    [9] Chartier P, Makazaga J, Murua A, et al. Multi-revolution composition methods for highly oscillatory differential equations[J]. Numerische Mathematik, 2014, 128(1): 167-192.
    [10] Vilmart G. Weak second order multirevolution composition methods for highly oscillatory stochastic differential equations with additive or multiplicative noise[J]. Siam Journal on Scientific Computing, 2015, 36(4): A1 770-A1 796.
    [11] Cohen D. On the numerical discretisation of stochastic oscillators[J]. Mathematics & Computers in Simulation, 2012, 82(8): 1 478-1 495.
    [12] Cohen D. Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations[J]. Numerische Mathematik, 2012, 121(1): 1-29.
    [13] Hairer E, Lubich C, Wanner G. Geometric numerical integration: structure-preserving algorithms for ordinary differential equations[J]. Series in Computational Mathematics, 2006, 25(1): 805-882.
    [14] Kunita H. On the representation of solutions of stochastic differential equations[M]. Séminaire de Probabilités XIV 1978/79. Springer Berlin Heidelberg, 1980: 282-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700