用户名: 密码: 验证码:
基于理想点法的加筋板屈曲承载力优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Buckling Capacity Optimization of Stiffened Panels Based on Ideal Point Method
  • 作者:唐其琴 ; 李伯阳
  • 英文作者:TANG Qi-qin;LI Bo-yang;Institute of Systems Engineering,China Academy of Engineering Physics;
  • 关键词:加筋板 ; 屈曲 ; 优化设计 ; 理想点法
  • 英文关键词:stiffened panels;;buckling;;optimization design;;ideal point method
  • 中文刊名:JSCX
  • 英文刊名:Equipment Environmental Engineering
  • 机构:中国工程物理研究院总体工程研究所;
  • 出版日期:2019-02-25
  • 出版单位:装备环境工程
  • 年:2019
  • 期:v.16
  • 语种:中文;
  • 页:JSCX201902008
  • 页数:5
  • CN:02
  • ISSN:50-1170/X
  • 分类号:44-48
摘要
目的针对加筋板在使用工况中易发生屈曲和结构失稳,提出一种基于理想点法的屈曲承载力优化设计方法。方法以加筋板的屈曲承载力最大和结构质量最小为目标,以加筋板的屈曲、最大vonMises应力和筋条压损等为约束条件,并利用理想点法将多目标优化问题转化为单目标优化问题。基于ANSYS参数化建模技术,构建屈曲分析、优化设计一体化分析与设计模型,并采用单目标优化算法——DOWNHILL SIMPLEX算法实施了优化分析。结果优化后结构质量从0.195 kg增加到0.24 kg,增加了23%,结构承载力从129.4 k N提升到235.84 kN,提高了82%。结论通过优化能够获得结构性能折中的方案,可为加筋板结构设计应用提供参考。
        Objective To propose a buckling capacity optimal method based on ideal point method in view of the problem that stiffened panels are susceptible to buckling and structural instability in actual conditions.Methods The buckling capacity optimal method was established to maximize the buckling capacity and minimize the weight of the structures subjected to constraints on buckling,maximum von Mises stress as well as crippling,and the multi-objective optimization problem was converted to single-objective problem via ideal point method.Based on ANSYS parametric modeling technology,the integration of buckling analysis and optimization design model was constructed.A single-objective optimal algorithm of DOWNHILL SIMPLEX was adopted to implement the optimization analysis.Results The weight was raised from 0.195 kg to 0.24 kg,and the structural load-capacity was improved from 129.4 kN to 235.84 kN,with an increase of 23% and 82% respectively.Conclusion A compromised design might be achieved by optimization,which may provide a reference for design and applications of the stiffened panel structures.
引文
[1]杨竣博,宋笔锋,钟小平.曲加筋条壁板优化设计研究[J].机械强度,2014,36(6):904-910.
    [2]张柱国,姚卫星,刘克龙.基于进化Kriging模型的金属加筋板结构布局优化方法[J].南京航空航天大学学报,2008,40(4):497-500.
    [3]张柱国.基于代理模型的加筋板结构布局优化设计[D].南京:南京航空航天大学,2016.
    [4]张卫红,章胜冬,高彤.薄壁结构的加筋布局优化设计[J].航空学报,2009,30(11):2126-2131.
    [5]RIKARDS R,ABRAMOVICH H,KALNINS K,et al.Surrogate Modeling in Design Optimization of Stiffened Composite Shells[J].Composite Structures,2006,73:244-251.
    [6]李洋.薄壁加筋结构屈曲分析及优化设计[D].北京:北京工业大学,2013.
    [7]叶红玲,魏旭豪,郑小龙,等.基于理想点法的液体静压支承系统多目标参数优化设计[J].计算力学学报,2011,28(S1):117-121.
    [8]程耿东.工程结构优化设计基础[M].大连:大连理工大学出版社,2012:1-9.
    [9]李明轩,苏小平.三轿车后副车架多目标拓扑优化方法研究[J].机械设计与制造,2016,6:130-134.
    [10]金浩,向宇,蒋红华,等.轿车前保险杠碰撞性能多目标优化[J].机械科学与技术,2017,36(6):943-949.
    [11]李骁,马艳龙,李映辉.框架结构多目标优化方法[J].应用数学和力学,2014,35(S1):284-289.
    [12]唐其琴,李伯阳,石运国,等.热力复合作用下的典型弹箭结构优化设计[J].机械强度,2016,38(6):1229-1236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700