用户名: 密码: 验证码:
新疆野苹果次生代谢产物对虫害胁迫的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of Secondary Metabolites to Insect Stress in Xinjiang Wild Apple
  • 作者:梅闯 ; 闫鹏 ; 艾沙江·买买提 ; 朱燕飞 ; 马凯 ; 韩立群 ; 王继勋
  • 英文作者:MEI Chuang;YAN Peng;Aisajan Mamat;ZHU Yan-fei;MA Kai;HAN Li-qun;WANG Ji-xun;Research Institute of Horticultural Crops,Xinjiang Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Pomology ( Xinjiang) ,Ministry of Agriculture;
  • 关键词:新疆野苹果 ; 苹果小吉丁虫 ; 抗虫性 ; 次生代谢产物
  • 英文关键词:Malus sieversii;;Agrilusmali Mats;;insect resistance;;secondary metabolite
  • 中文刊名:XJNX
  • 英文刊名:Xinjiang Agricultural Sciences
  • 机构:新疆农业科学院园艺作物研究所/农业部新疆地区果树科学观测试验站;
  • 出版日期:2019-04-15
  • 出版单位:新疆农业科学
  • 年:2019
  • 期:v.56
  • 基金:新疆维吾尔自治区自然科学基金(2016D01B042)~~
  • 语种:中文;
  • 页:XJNX201904011
  • 页数:7
  • CN:04
  • ISSN:65-1097/S
  • 分类号:96-102
摘要
【目的】研究新疆野苹果(Malus sieversii)受到虫害胁迫诱导后相关次生代谢物质的变化及其产生规律,为保护利用新疆野苹果资源提供理论依据。【方法】以经过前期鉴定稳定遗传的抗虫株系为材料,利用液相色谱-质谱(LC-MS)联用技术,定性定量测定次生代谢物质含量变化趋势。【结果】在自然条件下,香豆酸含量显著高于抗虫株系,含量分别为2. 2×10~4和0. 5×10~4μg/mL,差异倍数达到4. 4倍。反式肉桂酸、咖啡酸、香草酸、阿魏酸含量变化不大;虫害侵染胁迫条件下,羟基肉桂酰衍生物中的反式肉桂酸含量上升明显,达到极显著水平,含量分别为3. 3×10~4和2. 2×10~6μg/mL,差异倍数为6. 8倍。抗虫株系的咖啡酸含量极显著高于对照株系,提升倍数为3. 8,阿魏酸含量也得到显著提升。对照株系榭皮素含量显著高于抗虫株系,达到44. 3%,生物碱各组分及苯甲酸、绿原酸含量变化均不显著。【结论】新疆野苹果被苹果小吉丁虫(Agrilusmali Mats.)侵染诱导胁迫后,羟基肉桂酰衍生物等相关次生代谢产物产生积极响应。
        【Objective】The aim of the study is to provide a theoretical basis for the effective protection and utilization of Xinjiang wild apple( Malus sieversii) by understanding the changes of secondary metabolites and their generation pattern in the plant under insect stress. 【Method】The content change trend of secondary metabolites was determined qualitatively and quantitatively by liquid chromatography-mass spectrometry( LC-MS) using insect-resistant strains identified in the previous period as materials. 【Result】Under natural conditions without pest stress,the content of coumaric acid in the control group was significantly higher than that of the resistant strains,which were 2. 2 × 10~4μg/mL versus 0. 5 × 10~4μg/mL respectively,with a fold change of 4. 4. The contents of trans-cinnamic acid,caffeic acid,vanillic acid and ferulic acid did not change much. Under the insect infection condition,the content of trans-cinnamic acid,one of the hydroxycinnamyl derivatives,increased significantly to a very high level. The figures were 3. 3 × 10~4μg/mL and 2. 2× 10~6μg/mL in the control and the resistant group with a fold change of 6. 8. At the same time,the caffeic acid in the insect-resistant strains was significantly higher or 3. 8 times of the control ones. Similar change was observed in ferulic acid content. The control strains were significantly richer in quercetin compared with the resistant ones,reaching 44. 3%. And the changes of alkaloids,benzoic acid and chlorogenic acid were not significant. 【Conclusion】Secondary metabolites such as hydroxycinnamyl derivatives experienced positive responses in Xinjiang wild apple after the invasion of Agrilusmali Mats.
引文
[1]Duan,N.,Bai,Y.,Sun,H.,Wang,N.,Ma,Y.,&Li,M.,et al.(2017). Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement.Nature Communications,8(1):249.
    [2]Forsline,P. L.,Aldwinckle,H. S.,Dickson,E. E.,et al.(2010). Collection,Maintenance,Characterization,and Utilization of Wild Apples of Central Asia. Horticultural Reviews:Wild Apple and Fruit Trees of Central Asia,Volume 29:1-61.
    [3]Ma,X.,Cai,Z.,Liu,W.,et al.(2017). Identification,genealogical structure and population genetics of s-alleles in malus sieversii,the wild ancestor of domesticated apple. Heredity.119(3):185-196.
    [4]Yi,Z.,Liu,D.,Cui,X.,et al.(2016). Morphology and ultrastructure of antennal sensilla in male and female agrilus mali(coleoptera:buprestidae). Journal of Insect Science,16(1):87.
    [5]Cui,X.,Liu,D.,Sun,K.,et al.(2018). Expression profiles and functional characterization of two odorant-binding proteins from the apple buprestid beetle agrilus mali(coleoptera:buprestidae). Journal of Economic Entomology. 111(3):1,420-1,432.
    [6]梅闯,闫鹏,艾沙江·买买提,等.新疆野苹果(Malus sieversii)受苹小吉丁虫危害程度与树皮厚度、径阶的关系[J].中国农业科技导报,2016,18(4):24-30.MEI Chuang,YAN Peng,AI Sha-jiang,et al.(2016). The Relationship between Bark Thickness and Branch Roughness on Agrilusmali Damage in Xinjiang Wild Apple[J]. Review of China Agricultural Science and Technology,18(4):24-30.(in Chinese)
    [7]Cornille,A.,Giraud,T.,Smulders,M. J. M.,et al.(2013). The domestication and evolutionary ecology of apples.Trends in Genetics,30(2):57-65.
    [8]Guedes, L. M., Aguilera, N.,Ferreira,B. G., et al.(2018). Anatomical and phenological implications between schinus polygama(cav.)(cabrera)(anacardiaceae)and the galling insect calophya rubra(blanchard)(hemiptera:psylloidea).Plant Biology,20(3):507-515.
    [9]Zhuang,H.,Li,J.,Song,J.,et al.(2018). Aphid(\r,myzus persicae\r,)feeding on the parasitic plant dodder(\r,cuscuta australis\r,)activates defense responses in both the parasite and soybean host. New Phytologist.,218(4):1,586-1,596.
    [10]Bennett,R. N.,&Wallsgrove,R. M.(2010). Secondary metabolites in plant defence mechanisms. New Phytologist,127(4):617-633.
    [11]Rattan,R. S..(2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection,29(9):913-920.
    [12]Rask,L.,Erik Andréasson,Ekbom,B.,et al.(2000).Myrosinase:gene family evolution and herbivore defense in brassicaceae. Plant Molecular Biology,42(1):93-114.
    [13]Donze-Reiner,T.,Palmer,N. A.,Scully,E. D.,et al.(2017). Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC Plant Biology,17(1):46.
    [14]左彤彤,迟德富,王牧原,等.不同品系杨树酚酸类物质对青杨脊虎天牛的驱避作用[J].植物保护学报,2008,35(2):160-164.ZUO Tong-tong,CHI De-fu,WANG Mu-yuan,et al.(2008). Repellent effects of phenolic acids in different strain poplars to Xylotrechus rusticus[J]. Acta Phytophylacica Sinica,35(2):160-164.(in Chinese)
    [15]王永丽.斜纹夜蛾诱导大豆抗虫防御反应转录谱分析和分子功能研究[D].南京:南京农业大学博士论文,2014.WANG Yong-li.(2014). Transcriptome analysis and molecular identification of induced rseistance against common cutworm(Spodoptera litura Fabricius)in soybean[D]. Ph D Dissertation.Nanjing Agricultural University,Nanjing.(in Chinese)
    [16]梅闯,闫鹏,马凯,等.新疆野苹果不同类型单株对苹果小吉丁虫抗性差异[J].新疆农业科学,2015,52(10):1 859-1 865.MEI Chuang,YAN Peng,MA Kai,et al.(2015). Agrilus mali Matsumura resistance of different type of Xinjiang Wild Apple[J]. Xinjiang Agricultural Sciences,52(10):1,859-1,865.(in Chinese)
    [17]Francescato,L. N.,Debenedetti,S. L.,Schwanz,T. G.,et al.(2013). Identification of phenolic compounds in equisetum giganteum by lc-esi-ms/ms and a new approach to total flavonoid quantification. Talanta,105:192-203.
    [18]Pan,X.,Welti,R.,&Wang,X.(2010). Quantitative analysis of major plant hormones in crude plant extracts by highperformance liquid chromatography-mass spectrometry. NATURE PROTOCOLS,5(6):986-992.
    [19]Wojakowska,A.,Piasecka,A.,Pedro M García-López,et al.(2013). Structural analysis and profiling of phenolic secondary metabolites of mexican lupine species using lc-ms techniques.Phytochemistry,92:71-86.
    [20]Chappell,M. J.,Proulx,M. J.,Saunders,R. C.,et al.(1995). Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme a reductase a rate-limiting step for isoprenoid biosynthesis in plants. Plant Physiology,109(4):1,337-1,343.
    [21]Miller,R. N. G.,Costa Alves,G. S.,&Van Sluys,M. A.(2017). Plant immunity:unravelling the complexity of plant responses to biotic stresses. Annals of Botany,119(5):681-687.
    [22]Robbins,C. T.(1987). Role of tannins in defending plants against ruminants:reduction in protein availability. Ecology,68(1):98-107.
    [23]Jansen,J. J.,Allwood,J. W.,Marsdenedwards,E.,Putten,et al.(2009). Metabolomic analysis of the interaction between plants and herbivores. Metabolomics,5(1):150-161.
    [24]Wink M.(1983). Wounding-induced increase of quinoliziding alkaloid accumulation in lupin leaves[J]. Zeitschrift fur Naturforschung C,38(11):905-909.
    [25]Barah,P.,&Bones,A. M.(2015). Multidimensional approaches for studying plant defence against insects:from ecology to omics and synthetic biology. Journal of Experimental Botany,66(2):479-493.
    [26]Seneviratne,G.,&Jayasinghearachchi,H. S.(2003). Phenolic acids:possible agents of modifying n2-fixing symbiosis through rhizobial alteration. Plant and Soil,252(2):385-395.
    [27]Liu,Q.,Wang,X.,Tzin,V.,et al.(2016). Combined transcriptome and metabolome analyses to understand the dynamic responses of rice plants to attack by the rice stem borer chilo suppressalis,(lepidoptera:crambidae). BMC Plant Biology,16(1):259.
    [28]Mochida,K.,&Shinozaki,K.(2011). Advances in omics and bioinformatics tools for systems analyses of plant functions.Plant and Cell Physiology,52(12):2,017-2,038.
    [29]Hettenhausen,C.,Li,J.,Zhuang,H.,Sun,H.,et al.(2017). Stem parasitic plant cuscuta australis(dodder)transfers herbivory-induced signals among plants. Proceedings of the National Academy of Sciences of the United States of America,114(32):E6703.
    [30]Aimin,Z.,Hongping,M.,Enhui,L.,et al.(2017).Transcriptome sequencing of dianthus spiculifolius and analysis of the genes involved in responses to combined cold and drought stress. International Journal of Molecular Sciences,18(4):849.
    [31]Seung,E.,Seung-A,B.,Jae,K.,et al.(2018). Transcriptome analysis in chinese cabbage(brassica rapa ssp. pekinensis)provides the role of glucosinolate metabolism in response to drought stress. Molecules,23(5):1,186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700