用户名: 密码: 验证码:
地浸采铀溶质运移研究进展及展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress and Prospect of Research on Solute Transport during In-Situ Leaching of Uranium
  • 作者:李衡 ; 周义朋
  • 英文作者:Li Heng;Zhou Yipeng;State Key Laboratory of Nuclear Resources and Environment,School of Water Resources & Environmental Engineering,East China University of Technology;
  • 关键词:地浸采铀 ; 溶质运移 ; 反应运移 ; 运移模型
  • 英文关键词:in-situ leaching uranium mining;;solute transport;;reactive transport;;transport model
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:东华理工大学水资源与环境工程学院核资源与环境国家重点实验室;
  • 出版日期:2019-01-28 07:00
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.276
  • 基金:国家自然科学基金项目(41572231);; 国家重点基金研究发展计划(973)项目(2015CB453002);; 江西省科技计划项目(20142BFB29004,20151BBB60093)资助
  • 语种:中文;
  • 页:ZXJS201903013
  • 页数:12
  • CN:03
  • ISSN:11-2111/TF
  • 分类号:98-109
摘要
地浸采铀相较于传统采铀方法具有低成本、绿色环保、人员需求少等优点,目前已在全世界采铀行业得到了广泛应用。溶质运移是地浸采铀中研究的关键问题,了解并掌握地浸采铀中溶质的运移机制,对于提高铀的浸出效率有着重要意义。首先对地浸采铀溶质运移机制和运移方式的研究进行了综述,并分别总结了研究溶质运移机制和运移方式对于提高铀浸出效率的意义;其次重点分析了近年来国内外研究人员在地浸采铀反应性溶质运移和多场耦合模型方面相关研究进展,阐述了地浸溶质运移的复杂性以及研究过程中所面临的挑战。最后综合已有研究,认为现阶段地浸采铀溶质运移缺少对微观机制、气液固三相反应运移以及尺度转换问题的研究,且耦合模型也有待进一步完善。对于上述4个问题,文章有针对性地提出了下一步研究方向的展望建议。
        Compared with traditional uranium mining methods, in-situ leaching uranium mining has the advantages of low cost, environmental protection and less personnel demand, which has been widely used in the uranium mining industry all over the world. Solute transport is a key problem in the study of in-situ leaching of uranium mining. It is of great significance to improve uranium leaching efficiency to understand and master the transport mechanism of in-situ leaching of uranium mining. Firstly, studies on the transport mechanism and transport mode of solute transport of in-situ leaching uranium mining were reviewed in this paper. And the significance of studying solute transport mechanism and transport mode for improving uranium leaching efficiency were summarized. Secondly, the research progress of reactivity solute transport and multi-field coupling model of in-situ leaching uranium mining were emphatically analyzed by researchers at home and abroad in recent years. The complexity of solute transport and the challenges in the research process were described. At last, based on the existing research, it was found that the solute transport of in-situ leaching of uranium mining lacked the research on microcosmic mechanism, gas-liquid-solid three-phase reaction transport and scale conversion, and the coupling model needed to be further improved at this stage. For the above four questions, the article put forward the prospect of recommendations the next step of research direction.
引文
[1]IAEA.In situ leach uranium mining:an overview of operations[R].IAEA Nuclear Energy Series NF-T-1.4,Vienna:IAEA,2016.
    [2]Becherkin S G,Bakhurov V G,Lutsenko I K.Underground leaching of uranium from low-grade in situ ores[J].Atomic Energy,1968,24(2):154.
    [3]Gardener J,Richie M I.Leaching of uranium ore in situ[P].US:3309140,1967.
    [4]Underhill D H.In situ leach uranium mining in the U-nited States of America:past,present and future[R].IAEA-TECDOC-720,Vienna:IAEA,1993.
    [5]Mudd G M.Critical review of acid in situ leach uranium mining:1.USA and Australia[J].Environmental Geology,2001,41(3-4):390.
    [6]Mudd G M.Critical review of acid in situ leach uranium mining:2.Soviet Block and Asia[J].Environmental Geology,2001,41(3-4):404.
    [7]IAEA.World distribution of uranium deposits(UDEPO)[R].IAEA-TECDOC-1843,Vienna:IAEA,2018.
    [8]IAEA.Uranium resources as co-and by-products of polymetallic,base,rare earth and precious metal ore deposits[R].IAEA-TECDOC-1849,Vienna:IAEA,2018.
    [9]Que W M,Wang H F,Tian S F,Zhang Z G,Yao Y X.Research status and development of in-situ leaching uranium techniques in China[J].Uranium Mining and Metallurgy,2005,24(3):113.(阙为民,王海峰,田时丰,张泽贵,姚益轩.我国地浸采铀研究现状与发展[J].铀矿冶,2005,24(3):113.)
    [10]Su X B,Du Z M.Development and prospect of China uranium in-situ leaching technology[J].China Mining Magazine,2012,21(9):79.(苏学斌,杜志明.我国地浸采铀工艺技术发展现状与展望[J].中国矿业,2012,21(9):79.)
    [11]Zhang F F,Su X B,Xing Y G,Su Y R.New progresses on in-situ leaching of uranium deposit[J].China Mining Magazine,2012,21(S1):9.(张飞凤,苏学斌,邢拥国,苏艳茹.地浸采铀新工艺综述[J].中国矿业,2012,21(S1):9.)
    [12]Wang H F,Xu Y Q,Tang Q S,Ma L C.Mining block leaching rate for in-situ leaching uranium mines in China[J].Journal of East China University of Technology(Natural Science),2017,40(1):66.(王海峰,徐屹群,汤庆四,马连春.我国地浸采铀矿山采区浸出率现状分析[J].东华理工大学学报(自然科学版),2017,40(1):66.)
    [13]Du Y B.Prospect of technological innovation in China's uranium industry:focusing on uranium forum of China International Mining Conference in 2017:promoting science and technology innovation strategy and international cooperation to build“Four New Systems”[J].China Nuclear Industry,2017,(11):28.(杜运斌.中国铀业技术创新展望---聚焦2017中国国际矿业大会铀论坛---推进科技创新战略和国际合作打造“四新体系”[J].中国核工业,2017,(11):28.)
    [14]Su X B.Efficient green development,promote the construction of uranium mine base[J].China Nuclear Industry,2016,(11):16.(苏学斌.高效绿色发展推进铀矿大基地建设[J].中国核工业,2016,(11):16.)
    [15]Que W M,Tan Y H,Zeng Y J,Wang S D.Geochemical Kinetics and Mass Transport of in-situ Uranium Leaching[M].Beijing:Atomic Energy Press,2002.191.(阙为民,谭亚辉,曾毅君,王树德.原地浸出采铀反应动力学和物质运移[M].北京:原子能出版社,2002.191.)
    [16]Zhou X T,Que W M,Hu E M,Zhou Q,Su X B.Element migration and sedimentation of in-situ uranium leaching[J].Uranium Mining and Metallurgy,2000,19(2):78.(周锡堂,阙为民,胡鄂明,周泉,苏学斌.原地浸出采铀元素的迁移与沉淀[J].铀矿冶,2000,19(2):78.)
    [17]Peng D M,Zhang H J,Wang S D.Research of waterrock interaction in in-situ uranium leaching[J].Journal of East China Geological Institute,2001,24(1):41.(彭丁茂,张红军,王树德.原地浸出采铀的水岩作用研究[J].华东地质学学报,2001,24(1):41.)
    [18]Gao B,Sun Z X,Shi W J.An experimental study of migration characteristics and conditions of uranium during the in-situ leaching process[J].Geological Review,2003,49(3):316.(高柏,孙占学,史维浚.地浸过程中铀迁移特征及条件的实验研究[J].地质论评,2003,49(3):316.)
    [19]Huang Q Y.Analysis of solute transportation and acidification process during in-situ acid leaching of sandstone uranium ore[J].Nonferrous Metals(Extractive Metallurgy),2015,(6):50.(黄群英.某砂岩铀矿酸法地浸溶质运移与酸化进程分析[J].有色金属(冶炼部分),2015,(6):50.)
    [20]Huang Q Y,Zhou Y P,Liu K,Chen M F.Relationship between solute transportation and leaching solution flow during early period of acid in-situ leaching at one sandstone-type uranium deposit[J].Nonferrous Metals(Extractive Metallurgy),2017,(6):24.(黄群英,周义朋,刘科,陈梅芳.某砂铀矿地浸单元酸浸初期溶质运移与溶液渗流关系[J].有色金属(冶炼部分),2017,(6):24.)
    [21]Liu X X,Wang L,Xie J P,Liu Y Y.Experimental study on column leach of grade copper oxide[J].Mining and Metallurgical Engineering,2016,36(1):83.(刘新星,王龙,谢建平,刘媛媛.低品位氧化铜矿柱浸试验研究[J].矿冶工程,2016,36(1):83.)
    [22]Liu J H,Zhou Y P,Liu Y J,Sun Z X,Shi W J,Hu BQ.The new progress of uranium biology in-situ leaching[J].China Mining Magazine,2012,21(S1):262.(刘金辉,周义朋,刘亚洁,孙占学,史维浚,胡宝群.生物地浸采铀研究新进展[J].中国矿业,2012,21(S1):262.)
    [23]Gao B,Shi W J,Wang G H,Sun Z X.Study of migration characteristics of solute(uranium)during in-situ leach process[J].Uranium Geology,2003,19(2):100.(高柏,史维浚,王国华,孙占学.地浸过程中溶质(铀)迁移特征研究[J].铀矿地质,2003,19(2):100.)
    [24]Shi W J,Gao B,Wang G H.Mechanism of solute migration during in-situ leaching sandstone-type uranium deposit[J].Journal of East China Geological Institute,2004,27(1):24.(史维浚,高柏,王国华.砂岩型铀矿地浸过程中的溶质迁移机理[J].东华理工学院学报,2004,27(1):24.)
    [25]Xing Y G,Jiang X H,Huo J D,Liu J H.Alkaline insitu leaching of uranium in high-acid-consumption sandstone-type uranium deposit[J].Hydrometallurgy of China,36(6):467.(邢拥国,蒋小辉,霍建党,刘金辉.某高耗酸砂岩型铀矿床碱法地浸采铀试验研究[J].湿法冶金,36(6):467.)
    [26]Zhang Q L,Ding D X.CO2+O2column leaching test of sandstone type uranium ore[J].Nonferrous Metals(Extractive Metallurgy),2017,(8):35.(张青林,丁德馨.某砂岩铀矿石CO2+O2柱浸试验[J].有色金属(冶炼部分),2017,(8):35.)
    [27]Yin S H,Wu A X.Study on the solute transportation of bioleaching process its influential factors[J].Mining&Metallurgy,2008,17(1):21.(尹升华,吴爱祥.微生物浸出过程溶质迁移及其影响因素研究[J].矿冶,2008,17(1):21.)
    [28]Xu C D.Monitoring and Simulation of Water and Salt Transport in High Lift Irrigation Area[M].Beijing:China Water&Power Press,2015.30.(徐存东.高扬程灌区水盐运移监测与模拟[M].北京:中国水利水电出版社,2015.30.)
    [29]Liu Z B,Wang H F,Wen Z Q,Ding Y,Jiang Y,Xie TT,Xu G L,Wang G.Study on the characteristics of solution migration and drawing and injection control at well field in-situ leaching uranium[J].Uranium Mining and Metallurgy,2017,36(1):23.(刘正邦,王海峰,闻振乾,丁叶,姜岩,谢廷婷,胥国龙,王贵.地浸采铀井场溶液运移特征与抽注液量控制研究[J].铀矿冶,2017,36(1):23.)
    [30]Xie T T,Yao Y X,Gan N,Zhang C,Xu G L,Wen ZQ,Peng Y.Analysis and application of seepage-dispersion field characteristics in-situ leaching uranium(to be continued)[J].Uranium Mining and Metallurgy,2016,35(3):149.(谢廷婷,姚益轩,甘楠,张翀,胥国龙,闻振乾,彭阳.地浸采铀渗流弥散场特征分析及应用(待续)[J].铀矿冶,2016,35(3):149.)
    [31]Xie T T,Yao Y X,Gan N,Zhang C,Xu G L,Wen ZQ,Peng Y.Analysis and application of seepage-dispersion field characteristics in-situ leaching uranium(complete)[J].Uranium Mining and Metallurgy,2016,35(4):229.(谢廷婷,姚益轩,甘楠,张翀,胥国龙,闻振乾,彭阳.地浸采铀渗流弥散场特征分析及应用(续完)[J].铀矿冶,2016,35(4):229.)
    [32]Li B,Hao Z H,Chen Y.The effect of the pumping and pouring volume rising on the uranium concentration[J].China Mining Magazine,2016,25(S2):286.(李兵,郝志华,陈勇.钻孔抽注液量增大对浸出液铀浓度的影响分析[J].中国矿业,2016,25(S2):286.)
    [33]Zhou Y P,Shen Z L,Sun Z X,Liu J H,He J T.The simulation of leaching solution chemical components transportation during the in-situ leaching uranium mining experiment in a sandstone-type uranium deposit[J].China Mining Magazine,2012,21(S1):298.(周义朋,沈照理,孙占学,刘金辉,何江涛.某砂岩型铀矿地浸采铀试验溶浸液化学组分运移模拟[J].中国矿业,2012,21(S1):298.)
    [34]Roshal A,Kuznetsov D.Simulation of propagation of leachate after the ISL mining closure[A].Merkel B J,Hasche-Berger A.Uranium in the Environment[C].Berlin:Springer,2006.217.
    [35]Borch T,Roche N,Johnson T E.Determination of contaminant levels and remediation efficacy in groundwater at a former in situ recovery uranium mine[J].Journal of Environmental Monitoring,2012,14(7):1814.
    [36]He Z,Hu K G,Wang G Q,Feng G W.Numerical simulation of uranium transport in situ leaching uranium mine based on GMS[J].Nuclear Electronics&Detection Technology,2015,35(11):1106.(何智,胡凯光,王国全,冯光文.基于GMS的某铀矿地下水中铀迁移模拟[J].核电子学与探测技术,2015,35(11):1106.)
    [37]Hu K G,Zhang L,He Z,Yang P D.A simulation research about the natural adsorption of U in the immersion liquid of in-situ leaching uranium depositions based on GMS[J].Mine Engineering,2017,5(3):23.(胡凯光,张磊,何智,杨盘东.基于GMS某地浸铀矿地浸液中铀的吸附模拟[J].矿山工程,2017,5(3):23.)
    [38]Shen Z L.Hydrogeochemical Foundation[M].Beijing:Geological Publishing House,1986.39.(沈照理.水文地球化学基础[M].北京:地质出版社,1986.39.)
    [39]Perkins T K,Johnston O C.A review of diffusion and dispersion in porous media[J].Society of Petroleum Engineers Journal,1963,3(1):70.
    [40]Xie M L,Mayer K U,Claret F,Alt-Epping P,Jacques D,Steefel C,Chiaberge C,Simunek J.Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation[J].Computational Geosciences,2015,19(3):655.
    [41]Su X B,Liu N Z,Ma X L,Han Q T.Condition evaluation of in-situ leaching by natural reagent at a uranium deposit[J].Uranium Mining and Metallurgy,2007,26(4):174.(苏学斌,刘乃忠,马新林,韩青涛.新疆某铀矿床天然成因试剂地浸条件评价[J].铀矿冶,2007,26(4):174.)
    [42]Jiao X R,Sun Z X,Shi W J.Study of oxidizing property of hydroperoxide in uranium in-situ leaching[J].Nonferrous Metals(Extractive Metallurgy),2013,(12):21.(焦学然,孙占学,史维浚.地浸采铀中过氧化氢氧化性能研究[J].有色金属(冶炼部分),2013,(12):21.)
    [43]Zhou Y P,Ji H B,Sun Z X,Liu Y J,Xu L L,Shi WJ,Liu J H.Uranium migration kinetics in acid solution containing ferric iron[J].Acta Geological Sinica,2016,90(12):3554.(周义朋,吉宏斌,孙占学,刘亚洁,徐玲玲,史维浚,刘金辉.酸性含Fe3+溶液作用下铀的溶解迁移特征[J].地质学报,2016,90(12):3554.)
    [44]Li P,Liu G H,Duan B S,Feng G P,Shao Y F,Zhou JY.Analysis on the problems of high acid consumption and low concentration of uranium in a deposit in Xinjiang[J].Uranium Mining and Metallurgy,2018,37(1):26.(李坡,刘国宏,段柏山,冯国平,邵勇峰,周江勇.新疆某矿床酸耗高、浸出液铀浓度低的原因分析[J].铀矿冶,2018,37(1):26.)
    [45]Liu J H,Sun Z X,Shi W J,Zhou Y P.Factors influencing in-situ leaching of uranium mining in a sandstone deposit in Shihongtan,Northwest China[J].Journal of Groundwater Science and Engineering,2015,3(1):16.
    [46]Xu G F.Analysis of the main technological parameters of CO2+O2in situ leaching uranium and problems by chemical precipitation blocking[J].Uranium Mining and Metallurgy,2014,33(4):197.(许根福.CO2+O2地浸采铀主要工艺参数及化学沉淀堵塞问题分析[J].铀矿冶,2014,33(4):197.)
    [47]Bi Y Q,Hyun S P,Kukkadapu R K,Hayes K F.Oxidative dissolution of UO2in a simulated groundwater containing synthetic nanocrystalline mackinawite[J].Geochimica et Cosmochimica Acta,2013,102:175.
    [48]Johnson R H,Tutn H.Reactive transport modelling at uranium in situ recovery sites:uncertainties in uranium sorption on iron hydroxides[A].Brown A,Figueroa L,Wolkersdorfer C.Annual International Mine Water Association Conference:Reliable Mine Water Technology[C].Wisconsin:International Mine Water Association,2013.377.
    [49]Ma R,Liu C X,Greskowiak J,Prommer H,Zachara J,Zheng C M.Influence of calcite on uranium(VI)reactive transport in the groundwater-river mixing zone[J].Journal of Contaminant Hydrology,2014,156:27.
    [50]Dangelmayr M A,Reimus P W,Wasserman N L,Punsal J J,Johnson R H,Clay J T,Stone J J.Laboratory column experiments and transport modeling to evaluate retardation of uranium in an aquifer downgradient of a uranium in-situ recovery site[J].Applied Geochemistry,2017,80:1.
    [51]Xiu X Q,Zhang Y Y.Study on the adsorption of clay minerals on uranium by laboratory experiments[J].Acta Mineralogica Sinica,2013,33(S2):574.(修晓茜,张玉燕.粘土矿物对铀元素的吸附实验研究[J].矿物学报,2013,33(S2):574.)
    [52]Nair S,Karimzadeh L,Merkel B J.Sorption of uranyl and arsenate on Si O2,Al2O3,Ti O2,and Fe OOH[J].Environmental Earth Sciences,2014,72(9):3507.
    [53]Xu H,Han X Y,Liang W,Wang Yu,Wang Y Q,Wang Y.Sorption and separation of Pt,Pd and U from aqueous solution by aminophosphonic acid derivative silica[J].Chinese Journal of Rare Metals,2018,42(2):113.(徐辉,韩小元,梁威,王煜,王耀芹,王毅.氨基膦酸衍生硅胶吸附剂分离铂、钯和铀[J].稀有金属,2018,42(2):113.)
    [54]Zeng S,Tan K X,Sang X,Shi W G.Numerical simulation on multi-field and multi-process coupling dynamics of in-situ leaching of uranium[J].Atomic Energy Science and Technology,2011,45(4):500.(曾晟,谭凯旋,桑潇,史文革.原地浸出采铀多场多过程耦合动力学数值模拟[J].原子能科学技术,2011,45(4):500.)
    [55]Zhao C H,Li G M,Lei Q F,Ye S D.Application of numerical simulation technology in in-situ leaching uranium mine[J].Geotechnical Investigation&Surveying,2007,(7):27.(赵春虎,李国敏,雷奇峰,叶善东.数值模拟技术在地浸采铀矿山中的应用[J].工程勘察,2007,(7):27.)
    [56]Liu J W,Xu L C,Yang Y.Predicting the migration of uranium in groundwater of a in-situ leaching uranium mine[J].Uranium Mining and Metallurgy,26(2):84.(吕俊文,徐乐昌,杨勇.某地浸采铀矿山采区井场地下水中铀迁移预测[J].铀矿冶,2007,26(2):84.)
    [57]Li C G,Tan K X.Modeling the migration of radioactive contaminants in groundwater of in situ leaching uranium mine[J].Journal of University of South China(Science and Technology),2011,25(3):25.(李春光,谭凯旋.地浸采铀地下水中放射性污染物迁移的模拟[J].南华大学学报(自然科学版),2011,25(3):25.)
    [58]Greskowiak J,Gwo J,Jacques D,Yin J,Mayer K U.A benchmark for multi-rate surface complexation and 1Ddual-domain multi-component reactive transport of U(VI)[J].Computational Geosciences,2015,19(3):585.
    [59]Jiao Y J,Shi X Q,Wu J C.Comparison of uranium(VI)adsorption models in uranium mill tailings aquifer[J].Acta Scientiae Circumstantiae,2015,35(10):3193.(焦友军,施小清,吴吉春.铀尾矿库渗漏地下含水层中六价铀的几种吸附反应运移模型对比[J].环境科学学报,2015,35(10):3193.)
    [60]Appelo C A J,Rolle M.PHT3D:a reactive multicomponent transport model for saturated porous media[J].Groundwater,2010,48(5):627.
    [61]Li Q C,Zhou J.Research on character of solute transport in in-situ leaching of uranium in sandstone uranium deposit[A].Merhran S A.Design,Manufacturing and Mechatronics:Proceedings of the 2015 International Conference on Desi[C].Singapore:World Scientific Publishing,2015.1086.
    [62]Johnson R H,Truax R A,Lankford D A,Stone J J.Sorption testing and generalized composite surface complexation models for determining uranium sorption parameters at a proposed in-situ recovery site[J].Mine Water and the Environment,2016,35(4):1.
    [63]Schmidt R D.Geochemical modeling of in-situ leaching in a heterogeneous porous medium[J].Mines,Metallurgy&Exploration,1987,4(2):89.
    [64]Bommer P M,Schechter R S.Mathematical modeling of in-situ uranium leaching[J].Society of Petroleum Engineers Journal,1979,19(6):393.
    [65]Liddell K C,Bautista R G.Simulation of in situ uraninite leaching-part I:a partial equilibrium model of the NH4HCO3-(NH4)2CO3-H2O2leaching system[J].Metallurgical and Materials Transactions B,1994,25(2):171.
    [66]Liddell K C,Bautista R G.Simulation of in situ uraninite leaching-part II:the effects of ore grade and deposit porosity[J].Metallurgical and Materials Transactions B,1995,26(4):687.
    [67]Liddell K C,Bautista R G.Simulation of in situ uraninite leaching-part III:the effects of solution concentration[J].Metallurgical and Materials Transactions B,1995,26(4):695.
    [68]Que W M.Geochemical kinetics and mass transport of in-situ leaching of uranium[J].Uranium Mining and Metallurgy,2004,23(1):1.(阙为民.原地浸出采铀地球化学动力学模型研究[J].铀矿冶,2004,23(1):1.)
    [69]Regnault O,Lagneau V,Fiet N.3D reactive transport simulations of uranium in situ leaching:forecast and process optimization[A].Merkel B J,Arab A.Uranium-Past and Future Challenges[C].Switzerland:Springer International Publishing,2015.725.
    [70]Lian G X,Li M J,Tang Q S,Sun J,Cao F B,He Z F,Bai X K.Research on influence of relationship of the drawing over injection ratio to the groundwater environment[J].Uranium Mining and Metallurgy,2017,36(2):144.(连国玺,李梦姣,汤庆四,孙娟,曹凤波,何占飞,柏学凯.某地浸井场抽大于注比例与地下水环境影响关系的研究[J].铀矿冶,2017,36(2):144.)
    [71]Gene W,Castleton K J,Pelton M A.FRAMES-2.0software system:linking to the groundwater modeling system(GMS)RT3D and MT3DMS models[R].PNNL-16758,Washington:US Department of Energy,2007.
    [72]Parkurst D L,Appelo C A J.Description of input and examples for PHREEQC version 3:a computer program for speciation,batch-reaction,one-dimensional transport,and inverse geochemical calculations[R].TM6-A43.Virginia:US Geological Survey,2013.
    [73]Tan K X,Wang Q L,Hu E M,Hu K G,Zhou Q.Multiple processes coupling and reaction front propagation during in-situ leach mining:1.Theoretical analyses[J].Uranium Mining and Metallurgy,2005,24(1):14.(谭凯旋,王清良,胡鄂明,胡凯光,周泉.原地溶浸开采中的多过程耦合作用与反应前锋运动:1.理论分析[J].铀矿冶,2005,24(1):14.)
    [74]Tan K X,Wang Q L,Hu E M,Hu K G,Zhou Q.Multiple processes coupling and reaction front propagation during in-situ leach mining:2.numerical simulation[J].Uranium Mining and Metallurgy,2005,24(2):57.(谭凯旋,王清良,胡鄂明,胡凯光,周泉.原地溶浸开采中的多过程耦合作用与反应前锋运动:2.数值模拟[J].铀矿冶,2005,(2):57.)
    [75]Bonnaud E,Lagneau V,Regnault O,Fiet N.Reactive transport simulation applied on uranium ISR:effect of the density-driven flow[A].Merkel B J,Arab A.Uranium-Past and Future Challenges[C].Switzerland:Springer International Publishing,2015.699.
    [76]Lagneau V,Lee J V D.HYTEC results of the MoMas reactive transport benchmark[J].Computational Geosciences,2010,14(3):435.
    [77]Simon R B,Thiry M,Schmitt J M,Lagnegu V,Langlais V,Bélières M.Kinetic reactive transport modelling of column tests for uranium in situ,recovery(ISR)mining[J].Applied Geochemistry,2014,51:116.
    [78]Lee J V D,Windt D L.CHESS tutorial and cookbook,updated for version 3.0.user’s manual[R].LHM/RD/02/13.Paris:MINES Paris Tech,2002.
    [79]Yin M S,Yu Y,Shao J Y.Reviews of study on solute transport model in leaky aquifer system based on the influence of aquitard[J].Safety and Environmental Engineering,2016,23(3):10.(尹茂生,喻月,邵骏煜.基于弱透水层影响的越流含水层系统溶质运移模型研究综述[J].安全与环境工程,2016,23(3):10.)
    [80]Tartakovsk A M,Redden G,Lichtner P C,Scheibe TD,Meakin P.Mixing-induced precipitation:experimental study and multiscale numerical analysis[J].Water Resources Research,2008,44(6):2389.
    [81]Blunti M J,Bijeljic B,Dong H,Gharbi O,Lglauer S,Mostaghimi P,Paluszny A,Pentland C.Pore-scale imaging and modeling[J].Advances in Water Resources,2013,51(1):197.
    [82]Yoon H,Kang Q J,Valocchi A J.Lattice boltzmannbased approaches for pore-scale reactive transport[J].Reviews in Mineralogy and Geochemistry,2015,80(12):393.
    [83]Prodanovic'M,Mehmani A,Sheppard A P.Imagedbased multiscale network modelling of microporosity in carbonates[J].Geological Society London Special Publications,2015,406(1):95.
    [84]Landrot G,Ajo-Franklin J B,Yang L,Cabrini S,Steefel C I.Measurement of accessible reactive surface area in a sandstone,with application to CO2mineralization[J].Chemical Geology,2012,318-319:113.
    [85]Noiriel C.Resolving time-dependent evolution of pore scale structure,permeability and reactivity using X-ray microtomography[J].Reviews in Mineralogy and Geochemistry,2015,80(8):247.
    [86]Anovitz L M,Cole D R,Jackson A J,Rother G,Littrell K,Allard L F,Pollington A D,Wesolowski D J.Effect of quartz overgrowth precipitation on the multiscale porosity of sandstone:a(U)SANS and imaging analysis[J].Geochimica et Cosmochimica Acta,2015,158:199.
    [87]Kharak Y K,Cole D R,Hovorka S D,Gunter W D,Knauss K G,Freifeld B M.Gas-water-rock interaction in Frio Formation following CO2injection:implications for the storage of greenhouse gases in sedimentary basins[J].Geology,2006,34(7):577.
    [88]Gaus I.Role and impact of CO2-rock interactions during CO2storage in sedimentary rocks[J].International Journal of Greenhouse Gas Control,2010,4(1):73.
    [89]Wunsch A,Navarre-Sitchler A K,Moore J,Ricko A,Mccray J E.Metal release from limestones at high partial-pressures of CO2[J].Chemical Geology,2014,363:40.
    [90]Wang G H,Zhao J,Zhang F J,Tao Y.Interactions of CO2brine rock in sandstone reservoir[J].Journal of Central South University(Science and Technology),2013,44(3):1167.(王广华,赵静,张凤君,陶怡.砂岩储层中CO2-地层水-岩石的相互作用[J].中南大学学报(自然科学版),2013,44(3):1167.)
    [91]Wang Y X,Lin X Y.The Development Strategy of China Discipline:Groundwater Science[M].Beijing:Science Press,2018.249.(王焰新,林学钰.中国学科发展战略---地下水科学[M].北京:科学出版社,2018.249.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700