用户名: 密码: 验证码:
北京市平原区土壤有机碳垂直分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Vertical distribution of soil organic carbon in plains areas of Beijing
  • 作者:胡莹洁 ; 孔祥斌 ; 姚静韬
  • 英文作者:HU Yingjie;KONG Xiangbin;YAO Jingtao;College of Resources and Environmental Science,China Agricultural University;Key Laboratory of Agricultural Land Quality and Monitoring of Land and Resource;
  • 关键词:土壤有机碳 ; 垂直分布 ; 剖面深度 ; 北京市平原区
  • 英文关键词:soil organic carbon;;vertical distribution;;profile depth;;plains areas of Beijing
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国农业大学资源与环境学院;国土资源部农用地质量与监控重点实验室;
  • 出版日期:2018-10-18 14:59
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:北京市自然科学基金重点项目(8151001);; 国家自然科学基金面上项目(41771561)
  • 语种:中文;
  • 页:STXB201902017
  • 页数:10
  • CN:02
  • ISSN:11-2031/Q
  • 分类号:166-175
摘要
研究土壤有机碳垂直分布特征规律对精确测算土壤有机碳储量具有重要意义。通过野外调查实地挖取北京市平原区40个典型土壤剖面共169个样品数据,研究土壤有机碳垂直分布特征。结果表明:1)北京市平原区0—150 cm土壤平均有机碳含量为(5.98±2.62) g/kg,垂直分布上,随剖面深度增加土壤有机碳含量逐渐降低,且在浅层(≤60 cm)下降速度显著快于深层(>60 cm); 2)各发生层次不同土壤质地的有机碳含量差异整体上均表现为粉粒及黏粒含量比例越高,即质地越黏重,土壤有机碳含量越高; 3)不同土体构型的平均土壤有机碳含量大小关系为通体砂<通体壤<上壤下黏<夹黏,通体砂型土壤有机碳含量垂直变化相对平缓,上壤下黏型土壤有机碳含量在垂直方向呈"降-升-降"趋势,通体壤及夹黏型则均呈先快速下降后缓慢下降趋势; 4)耕地和园地土壤平均有机碳含量高于荒草地,耕地在整个剖面中土壤有机碳含量均居于三种土地利用类型之首,耕地和园地的土壤有机碳含量在0—20 cm和40—60 cm之间下降速度高达40.10%和55.92%,剖面深度超过60 cm后下降速度显著放缓,受人类活动直接影响相对较少的荒草地在垂直方向上变化相对平缓。
        Understanding the vertical distribution of soil organic carbon(SOC) is of great significance for precisely assessing SOC storage. In this paper,data from 169 samples of 40 typical soil profiles in the plains areas of Beijing were excavated in the field and analyzed to investigate the vertical distribution characteristics of SOC. The results showed: 1) The average SOC content in the 0—150 cm depth in the plains areas of Beijing was 5.98 ± 2.62 g/kg. SOC content gradually decreased with depth,and the rate of decrease in the shallow(≤60 cm) SOC was significantly faster than that in deep(>60 cm) SOC. The average SOC contents in the depths of 0—20,20—40,40—60,60—80,80—100 cm and 100—150cm were 8.49,6.47,4.78,4.94,4.61 g/kg and 3.87 g/kg,respectively. 2) The differences in the SOC of different soil textures at different profile layers generally showed that the higher the proportion of powder and clay content,namely,the more viscous the texture,the higher the content of SOC. 3) The trend of average SOC contents along different soil profile configuration patterns was sand-sand-sand < loam-loam-loam < loam-loam-clay < loam-clay-loam. The average SOC of sandsand-sand was significantly lower than that of the other soil profile configurations,and its vertical variation was relatively gentle. The SOC content of loam-loam-clay showed a vertical trend of "decline-rise-decline",while the SOC content of loam-loam-loam and loam-clay-loam showed a trend of rapid decrease and then slight decrease. 4) The average SOC contents of cultivated land and orchard land were higher than that of grassland,and the cultivated land in each profile levelranked the first among the three kinds of land use types. The SOC content of cultivated land and orchard land decreased by40.10% and 55.92%,respectively,between the depths of 0—20 cm and 40—60 cm,and the rate of decrease slowed down significantly in the profile depths deeper than 60 cm. Compared with the cultivated land and orchard land,which were more directly affected by human activities,the SOC contents of grassland changed relatively gently in the vertical direction.
引文
[1]吕贻忠,李保国.土壤学.北京:中国农业出版社,2006:151-159.
    [2] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science,2004,304(5677):1623-1627.
    [3] Eswaran H,Van Den Berg E,Reich P. Organic carbon in soils of the world. Soil science society of America journal,1992,57(1):192-194.
    [4]张凤荣.土壤地理学.北京:中国农业出版社,2001.
    [5] Franzluebbers A J. Achieving soil organic carbon sequestration with conservation agricultural systems in the southeastern united states. Soil Science Society of America Journal,2010,74(2):347-357.
    [6] Yigini Y,Panagos P. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Science of the Total Environment,2016,557-558:838-850.
    [7] Chevallier T,Voltz M,Blanchart E,Chotte J L,Eschenbrenner V,Mahieu M,Albrecht A. Spatial and temporal changes of soil C after establishment of a pasture on a long-term cultivated vertisol(Martinique). Geoderma,2000,94(1):43-58.
    [8] Cao X H,Long H Y,Lei Q L,Liu J,Zhang J Z,Zhang W J,Wu S X. Spatio-temporal variations in organic carbon density and carbon sequestration potential in the topsoil of Hebei Province,China. Journal of Integrative Agriculture,2016,15(11):2627-2638.
    [9]马玉芳,蔡立群,张仁陟.不同耕作措施下土壤有机碳含量的模拟研究.自然资源学报,2011,26(9):1546-1554.
    [10]李小涵,王朝辉,郝明德,李生秀.黄土高原旱地不同种植模式土壤碳特征评价.农业工程学报,2010,26(S2):325-330.
    [11]张春华,王宗明,任春颖,宋开山,张柏,刘殿伟.松嫩平原玉米带农田土壤有机碳时空格局.农业工程学报,2010,26(S1):300-307.
    [12]谭梦,黄贤金,钟太洋,赵荣钦,顾留其,徐泽基,蒋超俊,黄金碧.土地整理对农田土壤碳含量的影响.农业工程学报,2011,27(8):324-329.
    [13] Olson K R,Al-Kaisi M M. The importance of soil sampling depth for accurate account of soil organic carbon sequestration,storage,retention and loss. Catena,2015,125:33-37.
    [14] Wang S,Huang M,Shao X M,Mickler R A,Li K R,Ji J J. Vertical distribution of soil organic carbon in China. Environmental Management,2004,33(S1):S200-S209.
    [15]解宪丽,孙波,周慧珍,李忠佩.不同植被下中国土壤有机碳的储量与影响因子.土壤学报,2004,41(5):687-699.
    [16]吴雅琼,刘国华,傅伯杰,郭玉华.青藏高原土壤有机碳密度垂直分布研究.环境科学学报,2008,28(2):362-367.
    [17]王渊刚,罗格平,冯异星,李超凡,韩其飞,范彬彬.天山北麓不同土地覆被下土壤有机碳垂直分布特征.干旱区研究,2013,30(5):913-918.
    [18]奚小环,杨忠芳,夏学齐,李敏.基于多目标区域地球化学调查的中国土壤碳储量计算方法研究.地学前缘,2009,16(1):194-205.
    [19]霍莉莉,邹元春,郭佳伟,吕宪国.垦殖对湿地土壤有机碳垂直分布及可溶性有机碳截留的影响.环境科学,2013,34(1):283-287.
    [20]李龙波,刘涛泽,李晓东,刘文景,刘丛强.贵州喀斯特地区典型土壤有机碳垂直分布特征及其同位素组成.生态学杂志,2012,31(2):241-247.
    [21]杨帆,黄来明,李德成,杨飞,杨仁敏,赵玉国,杨金玲,刘峰,张甘霖.高寒山区地形序列土壤有机碳和无机碳垂直分布特征及其影响因素.土壤学报,2015,52(6):1226-1236.
    [22]丁咸庆,马慧静,朱晓龙,侯红波,彭佩钦,彭红东.大围山不同海拔森林土壤有机碳垂直分布特征.水土保持学报,2015,29(2):258-262.
    [23]王秀丽,张凤荣,朱泰峰,周建,吴昊,杨黎芳.北京山区土壤有机碳分布及其影响因素研究.资源科学,2013,35(6):1152-1158.
    [24]吕贻忠,张凤荣,孙丹峰.百花山山地土壤中有机质的垂直分布规律.土壤,2005,37(3):277-283.
    [25]奉婷,张凤荣,聂鑫,谢臻,汪晗.北京平原区粮菜林三地类时空转变特征.农业工程学报,2017,33(6):257-264.
    [26]孙强,蔡运龙,王乐.北京耕地流失的时空特征与驱动机制.资源科学,2007,29(4):158-163.
    [27] Ye H C,Huang Y F,Chen P F,Huang W J,Zhang S W,Huang S Y,Hou S. Effects of land use change on the spatiotemporal variability of soil organic carbon in an urban-rural ecotone of Beijing,China. Journal of Integrative Agriculture,2016,15(4):918-928.
    [28] Wang Z C,Liu S S,Huang C,Liu Y Y,Bu Z J. Impact of land use change on profile distributions of organic carbon fractions in peat and mineral soils in Northeast China. CATENA,2017,152:1-8.
    [29]中国科学院南京土壤研究所.野外土壤描述与采样手册.南京:中国科学院南京土壤研究所,2009.
    [30]徐艳,张凤荣,段增强,张琳,孔祥斌.区域土壤有机碳密度及碳储量计算方法探讨.土壤通报,2005,36(6):836-839.
    [31] Rabbi S M F,Tighe M,Delgado-Baquerizo M,Cowie A,Robertson F,Dalal R,Page K,Crawford D,Wilson B R,Schwenke G,Mcleod M,Badgery W,Dang Y P,Bell M,O'Leary G,Liu D L,Baldock J. Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Scientific Reports,2015,5:17866.
    [32]李学敏,翟玉柱,李雅静,刘全凤,王振明.土体构型与土壤肥力关系的研究.土壤通报,2005,36(6):975-977.
    [33]李梅,张学雷.基于GIS的农田土壤肥力评价及其与土体构型的关系.应用生态学报,2011,22(1):129-136.
    [34]叶文华.华北平原农田土体构型与作物生长关系的研究.地理学报,1985,(1):37-49.
    [35]奚小环,张建新,廖启林,陈德友,白荣杰,黄增芳.多目标区域地球化学调查与土壤碳储量问题——以江苏、湖南、四川、吉林、内蒙古为例.第四纪研究,2008,28(1):58-67.
    [36]王绍强,周成虎,李克让,朱松丽,黄方红.中国土壤有机碳库及空间分布特征分析.地理学报,2000,(5):533-544.
    [37] Wang S Q,Zhou C H,Liu J Y,Tian H Q,Li K R,Yang X M. Carbon storage in northeast China as estimated from vegetation and soil inventories.Environmental Pollution,2002,116(1):S157-S165.
    [38] Jobbágy E G,Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications,2000,10(2):423-436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700