用户名: 密码: 验证码:
日光温室墙体蓄放热层温度变化规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature variations in energy storage layers in Chinese solar greenhouse walls
  • 作者:佟国红 ; David ; M.Christopher
  • 英文作者:Tong Guohong;David M.Christopher;College of Water Conservancy, Shenyang Agricultural University;Department of Energy and Power Engineering, Tsinghua University;
  • 关键词:温室 ; 模型 ; 墙体 ; 温度分布 ; CFD
  • 英文关键词:greenhouse;;models;;wall;;temperature distribution;;CFD
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:沈阳农业大学水利学院;清华大学能源与动力工程系;
  • 出版日期:2019-04-08
  • 出版单位:农业工程学报
  • 年:2019
  • 期:v.35;No.359
  • 基金:国家高技术研究发展计划(“863”计划)课题(2013AA102407)
  • 语种:中文;
  • 页:NYGU201907021
  • 页数:8
  • CN:07
  • ISSN:11-2047/S
  • 分类号:178-185
摘要
墙体的蓄热保温性能决定了日光温室在室外环境作用下的温度变化。该文建立了单一材料墙体的温度变化估算模型,对黏土砖墙、砾石墙、加草黏土墙及夯土墙的温度变化进行了预测;采用CFD方法分析了墙体总厚度相同(0.60 m)和总厚度不同(0.60和0.72m)情况下,复合墙体各方案中蓄热材料层的温度变化特点。单一材料墙体温度变化预测结果显示,导温系数较大的砾石墙内部温度变化较其他墙体传播快;温度波动厚度还与墙内表面温度振幅有关,黏土砖墙内表面振幅从5℃增加到15℃,墙体内部振幅达到0.1℃时的波动厚度从0.42 m增加到0.54 m。此外,由预测的墙体温度变化可以确定单一材料墙体蓄放热层厚度。模型估算的夯土墙温度变化及蓄放热层厚度与已有文献测试值比较,吻合较好。复合墙体温度CFD模拟分析表明,墙总厚度0.60 m不变,蓄热材料层越厚内部温度衰减越快;蓄热材料层厚保持0.36 m,墙总厚度从0.60 m增加到0.72 m时,蓄热材料层温度均值最大升高1.7℃。研究还发现,复合墙体较厚的蓄热材料层比同材料单一材料墙体同厚度处温度衰减快,复合墙体蓄放热层厚度的确定取决于隔热层的位置。单一材料墙体及复合墙体蓄热材料层温度模拟模型可以为日光温室墙体的厚度及组成设计提供理论参考。
        Chinese solar greenhouse(CSG) walls can be made of a single material or can be layered walls that are conceptually divided into three layers(from the inside to the outside) as the energy storage layer, the thermally stable layer and the thermal preservation layer. The temperature variations in the energy storage layer then greatly influence the thermal characteristics of CSG walls during the winter. This study compares the storage layer temperature variations inside single material walls during clear winter days predicted by an analytical solution of the one-dimensional(1 D) transient conduction equation with the storage layer temperature distributions inside two-and three-layer layered walls predicted by a previously validated CFD model. This study used single material walls made of clay brick, gravel, clay with grass or rammed clay with the gravel having the largest thermal diffusivity(9.24×10-7 m~2/s) and the clay brick having the smallest thermal diffusivity(4.29×10-7 m~2/s). The single material wall temperature predictions show that for an inside wall surface temperature variation amplitude of 15℃and temperature variation amplitudes at the interface between the energy storage layer and the thermally stable layer of less than 0.1℃, the gravel wall had to be 0.25 m thicker than the clay brick wall. When the inside wall surface temperature variation amplitude was only 5℃, the gravel wall had to be 0.2 m thicker. Also, for interface wall temperature variation amplitudes of less than 0.1℃ and an inside wall surface temperature variation amplitude of 15℃, the clay brick wall had to be 0.54 m thick, but the wall had to be only 0.42 m thick for an inside wall surface temperature variation amplitude of 5℃. The model can predict the required thicknesses of the heat storage layer for any single material wall based on the interior wall temperature variations. The predicted temperature variations in a single material wall and the predicted storage layer thicknesses agree well with the measured values for a rammed clay wall. The simulation results for layered walls also show how the interior temperatures in the heat storage layer change with the insulation layer arrangement. For a total wall thickness of 0.6 m and heat storage layer thicknesses of 0.12, 0.24, 036 or 0.48 m, the temperatures across the energy storage layer decrease more quickly with the thicker energy storage layers. Additionally, the wall temperatures in the energy storage layer decrease more quickly in a layered wall than in a single material wall made of the same material since the energy storage layer thickness of 0.48 m was thinner than the single material wall thickness with the same material. Thus, the expected energy storage layer needs to be thicker than the thermal wavelength in the wall. When the total wall thickness changed from 0.6 to 0.72 m while the heat storage layer thickness was kept at 0.36 m, the average wall temperature in the thermal storage layer increased by up to 1.7℃. The results also show that the required thicknesses of the heat storage layer for layered walls depend on the insulation layer arrangement. The results for single material walls and layered walls give good guidance for wall thickness and wall composition selections for CSG.
引文
[1]Mobtaker H G,Ajabshirchi Y,Ranjbar S F,et al.Solar energy conservation in greenhouse:Thermal analysis and experimental validation[J].Renewable Energy,2016,96:509-519.
    [2]马承伟,卜云龙,籍秀红,等.日光温室墙体夜间放热量计算与保温蓄热性评价方法的研究[J].上海交通大学学报:农业科学版,2008,26(5):411-415.Ma Chengwei,Bu Yunlong,Ji Xiuhong,et al.Method for calculation of heat release at night and evaluation for performance of heat preservation of wall in solar greenhouse[J].Journal of Shanghai Jiaotong University:Agriculture Science,2008,26(5):411-415.(in Chinese with English abstract)
    [3]杨建军,邹志荣,张智,等.西北地区日光温室土墙厚度及其保温性的优化[J].农业工程学报,2009,25(8):180-185.Yang Jianjun,Zou Zhirong,Zhang Zhi,et al.Optimization of earth wall thickness and thermal insulation property of solar greenhouse in Northwest China[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2009,25(8):180-185.(in Chinese with English abstract)
    [4]Bastien D,Athienitis A K.Passive thermal energy storage,part 1:Design concepts and metrics[J].Renewable Energy,2018,103:1319-1327.
    [5]Hassanaina A A,Hokamb E M,Mallickc T K.Effect of solar storage wall on the passive solar heating constructions[J].Energy and Buildings,2011,43:737-747.
    [6]Lundin M,Andersson S,?stin R.Development and validation of a method aimed at estimating building performance parameters[J].Energy and Buildings,2004,36:905-914.
    [7]杨仁全,马承伟,刘永丽,等.日光温室墙体保温蓄热性能模拟分析[J].上海交通大学学报:农业科学版,2008,26(5):449-453.Yang Renquan,Ma Chengwei,Liu Yongli,et al.The imitation analysis of heat preservation and capability of the wall of solar greenhouse[J].Journal of Shanghai Jiaotong University:Agriculture Science,2008,26(5):449-453.(in Chinese with English abstract)
    [8]史宇亮,王秀峰,魏珉,等.日光温室土墙体温度变化及蓄热放热特点[J].农业工程学报,2016,32(22):214-221.Shi Yuliang,Wang Xiufeng,Wei Min,et al.Temperature variation,heat storage and heat release characteristics of soil wall in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(22):214-221.(in Chinese with English abstract)
    [9]陈端生,郑海山,刘步洲.日光温室气象环境综合研究:I.墙体,覆盖物热效应研究初报[J].农业工程学报,1990,6(2):77-81.Chen Duansheng,Zheng Haishan,Liu Buzhou.Comprehensive study on the meteorological environment of the sunlight greenhouse I.Preliminary study on the thermal effect of the wall body and covering materials[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),1990,6(2):77-81.(in Chinese with English abstract)
    [10]张志录,王思倩,刘中华,等.下沉式日光温室土质墙体热特性的试验与分析[J].农业工程学报,2012,28(12):208-215.Zhang Zhilu,Wang Siqian,Liu Zhonghua,et al.Experiment and analysis on thermal characteristics of cob wall in sunken solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2012,28(12):208-215.(in Chinese with English abstract)
    [11]彭东玲,张义,方慧,等.日光温室墙体一维导热的MATLAB模拟与热流分析[J].中国农业大学学报,2014,19(5):174-179.Peng Dongling,Zhang Yi,Fang Hui,et al.MATLABsimulation of one-dimensional heat transfer and heat flux analysis of north wall in Chinese solar greenhouse[J].Journal of China Agricultural University,2014,19(5):174-179.(in Chinese with English abstract)
    [12]李明,周长吉,周涛,等.日光温室土墙传热特性及轻简化路径的理论分析[J].农业工程学报,2016,32(3):175-181.Li Ming,Zhou Changji,Zhou Tao,et al.Heat transfer process of soil wall in Chinese solar greenhouse and its theoretical simplification methods[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(3):175-181.(in Chinese with English abstract)
    [13]白青,张亚红,孙利鑫.基于温波传递理论的日光温室土墙体蓄热层及墙体厚度分析[J].农业工程学报,2016,32(22):207-213.Bai Qing,Zhang Yahong,Sun Lixin.Analysis on heat storage layer and thickness of soil wall in solar greenhouse based on theory of temperature-wave transfer[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(22):207-213.(in Chinese with English abstract)
    [14]Zhang L Y,Jin L W,Wang Z N,et al.Effects of wall configuration on building energy performance subject to different climatic zones of China[J].Applied Energy,2017,182:1565-1573.
    [15]管勇,陈超,马彩雯,等.日光温室墙体保温层最佳厚度的确定[J].新疆农业科学,2015,52(3):542-550.Guan Yong,Chen Chao,Ma Caiwen,et al.Determination of optimum insulation thickness for solar greenhouse wall[J].Xinjiang Agricultural Sciences,2015,52(3):542-550.(in Chinese with English abstract)
    [16]温祥珍,李亚灵.日光温室砖混结构墙体内冬春季温度状况[J].山西农业大学学报:自然科学版,2009,29(6):525-528.Wen Xiangzhen,Li Yaling.Analysis of temperature within north composite wall of solar greenhouse[J].Journal of Shanxi Agricultural University:Natural Sciences Edition,2009,29(6):525-528.(in Chinese with English abstract)
    [17]管勇,陈超,凌浩恕,等.日光温室三重结构相变蓄热墙体传热特性分析[J].农业工程学报,2013,29(21):166-173.Guan Yong,Chen Chao,Ling Haoshu,et al.Analysis of heat transfer properties of three-layer wall with phase-change heat storage in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(21):166-173.(in Chinese with English abstract)
    [18]李明,周长吉,丁小明,等.日光温室聚苯乙烯型砖复合墙保温蓄热性能[J].农业工程学报,2016,32(1):200-205.Li Ming,Zhou Changji,Ding Xiaoming,et al.Heat insulation and storage performances of polystyrene-brick composite wall in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(1):200-205.(in Chinese with English abstract)
    [19]鲍恩财,朱超,曹晏飞,等.固化沙蓄热后墙日光温室热工性能试验[J].农业工程学报,2017,33(9):187-194.Bao Encai,Zhu Chao,Cao Yanfei,et al.Thermal performance test of solidified sand heat storage wall in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(9):187-194.(in Chinese with English abstract)
    [20]Tong G,Christopher D M,Zhao R,et al.Effect of location and distribution of insulation layers on the dynamic thermal performance of Chinese solar greenhouse walls[J].Applied Engineering in Agriculture,2014,30(3):457-469.
    [21]民用建筑热工设计规范:GB50716-1993[S].北京:中国计划出版社,1993.
    [22]付晨坦,杨玉艳,佟国红,等.三北地区日光温室墙体组成及厚度[C]//2015第四届中国寿光国际设施园艺高层学术论坛论文集,2015:61-65.
    [23]佟国红,李天来,王铁良,等.大跨度日光温室室内微气候环境测试分析[J].华中农业大学学报,2004(增):67-73.
    [24]Pitts D,Sissom L.Schaum’s Outline of Theory and Problems of Heat Transfer[M].Second Edition.McGraw-Hill Companies,Inc.,1998.
    [25]陆煜,程林.传热原理与分析[M].北京:科学出版社,1997.
    [26]马承伟,陆海,李睿,等.日光温室墙体传热的一维差分模型与数值模拟[J].农业工程学报,2010,26(6):231-237.Ma Chengwei,Lu Hai,Li Rui,et al.One-dimensional finite difference model and numerical simulation for heat transfer of wall in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2010,26(6):231-237.(in Chinese with English abstract)
    [27]佟国红,李保明,Christopher D M,等.用CFD方法模拟日光温室温度环境初探[J].农业工程学报,2007,23(7):178-185.Tong Guohong,Li Baoming,Christopher D M,et al.Preliminary study on temperature pattern in China solar greenhouse using computational fluid dynamics[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2007,23(7):178-185.(in Chinese with English abstract)
    [28]Tong G,Christopher D M,Li B.Numerical modelling of temperature variations in a Chinese solar greenhouse[J].Computers and Electronics in Agriculture,2009,68:129-139.
    [29]佟国红,Christopher D M,赵荣飞,等.复合墙体不同材料厚度对日光温室温度的影响[J].新疆农业科学,2014,51(6):999-1007.Tong Guohong,Christopher D M,Zhao Rongfei,et al.Temperature variations in Chinese solar greenhouses with different wall material thicknesses[J].Xinjiang Agricultural Sciences,2014,51(6):999-1007.(in Chinese with English abstract)
    [30]Tong G,Christopher D M.Temperature variations with various enclosure material thermal properties for a Chinese solar greenhouse[C]//2017 ASABE Annual International Meeting.
    [31]Ohanessian P,Charters W W S.Thermal simulation of a passive solar house using a trombe-michel wall structure[J].Solar Energy,1978,20:275-281.
    [32]李小芳,陈青云.墙体材料及其组合对日光温室墙体保温性能的影响[J].中国生态农业学报,2006,14(4):185-189.Li Xiaofang,Chen Qingyun.Effects of different wall materials on the performance of heat preservation of wall of sunlight greenhouse[J].Chinese Journal of Eco-Agriculture,2006,14(4):185-189.(in Chinese with English abstract)
    [33]李明,魏晓明,周长吉,等.发泡水泥对日光温室黏土砖墙保温蓄热性能的改善效果[J].农业工程学报,2014,30(24):187-192.Li Ming,Wei Xiaoming,Zhou Changji,et al.Improving effect of heat insulation performance of brick wall thickened with foam cement in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2014,30(24):187-192.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700