用户名: 密码: 验证码:
基于时域有限差分法的石墨烯纳米带阵列多频滤波特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-Frequency Filtering Characteristics of Graphene-Nanoribbon Arrays Based on Finite Difference Time Domain Method
  • 作者:阳胜 ; 曾春平 ; 肖驰 ; 周亚乔 ; 王昊 ; 马琨
  • 英文作者:Yang Sheng;Zeng Chunping;Xiao Chi;Zhou Yaqiao;Wang Hao;Ma Kun;School of Science,Kunming University of Science and Technology;
  • 关键词:集成光学 ; 石墨烯纳米带 ; 多频滤波器 ; 时域有限差分方法 ; 表面等离子体
  • 英文关键词:integrated optics;;graphene nanoribbons;;multi-frequency filters;;finite difference time domain method;;surface plasmon
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:昆明理工大学理学院;
  • 出版日期:2018-10-19 15:53
  • 出版单位:激光与光电子学进展
  • 年:2019
  • 期:v.56;No.641
  • 基金:国家自然科学基金(51278235);; 云南省教育厅科学研究基金重大项目(ZD2015003)
  • 语种:中文;
  • 页:JGDJ201906018
  • 页数:5
  • CN:06
  • ISSN:31-1690/TN
  • 分类号:170-174
摘要
基于石墨烯纳米带阵列的共振效应,提出了三层石墨烯纳米带阵列结构,研究了该阵列参数对复合结构的多频滤波特性的影响规律。利用时域有限差分(FDTD)法,讨论了费米能级、石墨烯带宽占比、外界折射率对滤波频率的影响。研究结果表明,增加费米能级能使谐振频蓝移,增加石墨烯带宽占比和外界折射率均使谐振频率红移,费米能级改变0.1eV时,谐振频率的改变量超过5THz。
        With the help of the resonance effect of graphene nanoribbon arrays,a three-layer graphene nanoribbon array is proposed.The influences of the various parameters of this array on the multi-frequency filtering characteristics of the composite structure are investigated.With the finite-difference time-domain(FDTD)method,the influences of Fermi level,graphene bandwidth ratio,and external refractive index on filter frequency are discussed.The research results show that the increase of Fermi level can make the resonant frequency blue shift,in contrast,the increase of graphene bandwidth ratio and external refractive index can both make the resonant frequency red shift.When Fermi level is changed by 0.1 eV,the resonant frequency can be changed by an amount of more than 5 THz.
引文
[1]Novoselov K S,Geim A K,Morozov S,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
    [2]Song Y W,Jang S Y,Han W S,et al.Graphene mode-lockers for fiber lasers functioned with evanescent field interaction[J].Applied Physics Letters,2010,96(5):051122.
    [3]Liu M,Yin X B,Zhang X.Double-layer graphene optical modulator[J].Nano Letters,2012,12(3):1482-1485.
    [4]Grigorenko A N,Polini M,Novoselov K S.Graphene plasmonics[J].Nature Photonics,2012,6(11):749-758.
    [5]Gosciniak J,Tan D T H.Graphene-based waveguide integrated dielectric-loaded plasmonic electroabsorption modulators[J].Nanotechnology,2013,24(18):185202.
    [6]Liu W G,Hu B,Li B,et al.Research progress of optical modulator based on graphene-metal composite structures[J].Laser&Optoelectronics Progress,2016,53(3):030005.刘伟光,胡滨,李彪,等.基于石墨烯-金属复合结构的光学调制器研究进展[J].激光与光电子学进展,2016,53(3):030005.
    [7]Chu H S,How Gan C.Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays[J].Applied Physics Letters,2013,102(23):231107.
    [8]Bi W H,Li C L,Wang X Y,et al.Birefringence and electro-optic properties of graphene covered microfiber[J].Acta Optica Sinica,2016,36(10):1026013.毕卫红,李彩丽,王晓愚,等.覆石墨烯微纳光纤双折射与电光调控特性[J].光学学报,2016,36(10):1026013.
    [9]Liu J F,Wright A R,Zhang C,et al.Strong terahertz conductance of graphene nanoribbons under a magnetic field[J].Applied Physics Letters,2008,93(4):041106.
    [10]Zhang Y B,Tang T T,Girit C,et al.Direct observation of a widely tunable bandgap in bilayer graphene[J].Nature,2009,459(7248):820-823.
    [11]Efetov D K,Kim P.Controlling electron-phonon interactions in graphene at ultrahigh carrier densities[J].Physical Review Letters,2010,105(25):256805.
    [12]Liu Y Z,Zhang Y P,Cao Y Y,et al.Modulator of tunable modulation depth based on graphene metamaterial[J].Acta Optica Sinica,2016,36(10):1016002.刘元忠,张玉萍,曹妍妍,等.基于石墨烯超材料深度可调的调制器[J].光学学报,2016,36(10):1016002.
    [13]Qiu P P,Qiu W B,Lin Z L,et al.Energy-band structure and density of states of composite lattice two-dimensional graphene plasmon polariton crystals[J].Laser&Optoelectronics Progress,2017,54(5):052401.邱平平,邱伟彬,林志立,等.复式晶格二维石墨烯等离子激元晶体的能带结构与态密度[J].激光与光电子学进展,2017,54(5):052401.
    [14]Thongrattanasiri S,ManjavacasA,García de Abajo FJ.Quantum finite-size effects in graphene plasmons[J].ACS Nano,2012,6(2):1766-1775.
    [15]Bao Q L,Zhang H,Yang J X,et al.Graphenepolymer nanofiber membrane for ultrafast photonics[J].Advanced Functional Materials,2010,20(5):782-791.
    [16]Chen S S,Brown L,Levendorf M,et al.Oxidation resistance of graphene-coated cu and Cu/Ni alloy[J].ACS Nano,2011,5(2):1321-1327.
    [17]Liu M,Yin X B,Ulin-Avila E,et al.A graphenebased broadband optical modulator[J].Nature,2011,474(7349):64-67.
    [18]Cai Y J,Zhu J F,Liu Q H.Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers[J].Applied Physics Letters,2015,106(4):043105.
    [19]Xu J L,Li X L,Wu Y Z,et al.Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser[J].Optics Letters,2011,36(10):1948-1950.
    [20]Falkovsky L A.Optical properties of graphene[J].Journal of Physics:Conference Series,2008,115(129):012004.
    [21]Xu B,Martinez A,Set S Y,et al.Polarization maintaining,nanotube-based mode-locked lasing from figure of eight fiber laser[J].IEEE Photonics Technology Letters,2014,26(2):180-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700