用户名: 密码: 验证码:
氧化石墨烯尺寸调控及其复合膜分离性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on size regulation of graphene oxide nanosheets and separation performance of composite membranes
  • 作者:王朋辉 ; 李怡恩 ; 张亚涛
  • 英文作者:WANG Penghui;LI Yien;ZHANG Yatao;School of Chemical Engineering and Energy, Zhengzhou University;Zhengzhou Key Laboratory of Advanced Separation Technology;
  • 关键词:氧化石墨烯 ; 尺寸控制 ; 纳滤膜 ; 水处理
  • 英文关键词:graphene oxide;;size control;;nanofiltration membrane;;water treatment
  • 中文刊名:MKXY
  • 英文刊名:Membrane Science and Technology
  • 机构:郑州大学化工与能源学院;郑州市先进分离技术重点实验室;
  • 出版日期:2019-06-25
  • 出版单位:膜科学与技术
  • 年:2019
  • 期:v.39;No.196
  • 基金:国家自然科学基金项目(U1704139)
  • 语种:中文;
  • 页:MKXY201903011
  • 页数:8
  • CN:03
  • ISSN:62-1049/TB
  • 分类号:66-73
摘要
通过改进Hummers法制备了氧化石墨烯(GO),通过控制氧化程度与超声破碎时间从化学与物理两方面调控制备不同尺寸GO纳米片.对得到的GO纳米片利用傅里叶转换红外光谱分析仪(FTIR)、X射线光电子能谱分析(XPS)、X射线衍射仪(XRD)和透射电子显微镜(TEM)进行了表征分析,结果表明,控制氧化程度对GO尺寸变化的影响远小于超声破碎时间的影响.同时用死端过滤的方法制备了GO/PAN复合纳滤膜,使用扫描电子显微镜(SEM)对复合膜表面及断面形貌进行了表征,并对该复合膜的纯水通量、盐(NaCl、MgSO_4)的截留率和染料(活性黑KNB)的截留率以及亲水性能进行了测试.结果表明,在相同条件下GO纳米片尺寸越小,制备的复合膜亲水性越好,对NaCl、MgSO_4的截留率分别从52.9%、74.8%降低至34.5%、47.6%,而对KNB染料的截留率一直保持在96%以上,纯水通量也从47 L/(m~2·h·MPa)上升至162 L/(m~2·h·MPa).
        Graphene oxide(GO) nanosheets were fabricated via modified Hummers' method and the effects of chemical structure and physical process on the size of GO nanosheets were investigated by the degree of oxidation and the ultrasonic treating time, respectively. Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), X-Ray powder diffraction(XRD) and transmission electron microscopy(TEM) were employed to characterize the obtained GO nanosheets, which indicated that ultrasonic time played an important role in determining the size of GO nanosheets. At the same time, a dead-end filtration device was used to coat GO nanosheets on the surface of PAN membrane(GO/PAN). The scanning electron microscopy(SEM) was used to characterize the surface and cross section of the composite membrane, then pure water flux and the rejection of salt(NaCl, MgSO_4), rejection of dye(reactive black KNB) and the hydrophilicity were conducted for PAN membranes coated with GO nanosheets of different sizes with the same loading. The results show that, with the decrease of GO nanosheets sizes, the hydrophilicity of the composite membranes is increased, and the rejection of NaCl solution reduces from 52.9% to 34.5%, for MgSO_4 reduces from 74.8% to 47.6% and KNB dye has remained above 96%. Meanwhile, the pure water flux increases from 47 L/(m~2·h·MPa) to 16.2 L/(m~2·h·MPa), which can be explained by the hydrophilicity of the GO/PAN composite membranes.
引文
[1] Geim A K.Graphene:Status and prospects[J].Science,2009,324:1530-1534.
    [2] Rao C N R,Sood A K,Subrahmanyam K S.Graphene:The new two-dimensional nanomaterial[J].Angew Chem Inter Ed,2009,48:7752 -7777.
    [3] Novoselov K S,Geim A K,Morozov S V A.Electric field effect in atomically thin carbon films[J].Science,2004,306:666-669.
    [4] Park S,Ruoff R S.Chemical methods for the production of graphenes[J].Nat Nanotechnol,2009,4:217-224.
    [5] Compton O C,Nguyen S T.Graphene oxide,highly reduced graphene oxide and graphene:Versatile building blocks for carbon-based materials[J].Small,2010,6:711-723.
    [6] Zhang X Q,Chen S,Han Q.Preparation and retention mechanism study of graphene and graphene oxide bonded silica microspheres as stationary phases for high performance liquid chromatography[J].J Chromatogr A,2013,1307:135-143.
    [7] Feng X M,Wang X,Xing W Y,et al.Simultaneous reduction and surface functionalization of graphene-oxide by chitosan and their synergistic reinforcing effects in PVA films [J].Ind Eng Chem Res,2013,52:12906-12914.
    [8] Biawas S,Drzal L T.Multilayered nano-architecture of variable sized graphene nanosheets for enhanced super-capacitor electrode performance[J].ACS Appl Mater Interf,2010,2:2293-2300.
    [9] Wang Y,Shi Z,Huang Y,et al.Supercapacitor devices based on graphene materials[J].Phys Chem Chem Phys,2009,113:13103-13107.
    [10] Rafal S,Beata Z,Ewa T,et al.Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis[J].Anal Chim Acta,2014,834:22-29.
    [11] Yang S T,Chang Y L,Wang H F,et al.Folding-aggregation of graphene oxide and its application in Cu(Ⅱ) removal [J].J Colloid Interf Sci,2010,351:122-127.
    [12] Dong G Y,Zhang Y T,Hou J W,et al.Graphene oxide nanosheets based novel facilitated transport membranes for efficient CO2 capture [J].Ind Eng Chem Res,2016,55:5403-5414.
    [13] Shen Y J,Wang H X,Liu J D,et al.Enhanced performance of a novel polyvinyl amine/chitosan/graphene oxide mixed matrix membrane for CO2 capture[J].ACS Sustainable Chem Eng,2015,3:1819-1829.
    [14] Hicks J,Behnam A,Ural A A.Computational study of tunneling-percolation electrical transport in graphene based nanocomposites[J].Appl Phys Lett,2009,95:213103.
    [15] Li C Y,Thostenson E T,Chou T W.Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites[J].Appl Phys Lett,2007,91:223114.
    [16] Nielsen L E.Models for the permeability of filled polymer systems[J].J Macromole Sci Pure Appl Chem,1967,A1:929-942.
    [17] Francois P,Andreia F D F,Siamak N,et al.Antimicrobial properties of graphene oxide nanosheets:Why size matters[J].ACS Nano,2015,9:7226-7236.
    [18] Pan S Y,Ilhan A A.Factors controlling the size of graphene oxide sheets produced via the graphite oxide route[J].ACS Nano,2011,5:4073-4083.
    [19] Li Y Q,Rehan U,Yarjan A S,et al.The effect of the ultrasonication pre-treatment of graphene oxide on the mechanical properties of GO/ polyvinyl alcohol composites[J].Carbon,2013,55:321 -327.
    [20] Uriel S,Patricia A,Ricardo S,et al.A multi-step exfoliation approach to maintain the lateral size of graphene oxide sheets[J].Carbon,2014,80:830-832.
    [21] Minh H T,Cheol S Y,Sunhye Y,et al.Influence of graphite size on the synthesis and reduction of graphite oxides[J].Curr Appl Phys,2014,14:S74-S79.
    [22] Marcano D C,Kosynkin D V,Berlin J M,et al.Improved synthesis of graphene oxide[J].ACS Nano,2010,4(8):4806-4814.
    [23] 余亮,张亚涛,刘金盾.改性氧化石墨烯聚醚砜杂化荷正电纳滤膜的制备及表征 [J].高等学校化学学报,2014,35(5):1100-1105.
    [24] 毕椹,胡勇有,谭平,等.改进Hummers法制备氧化石墨烯及其吸附铜离子研究[J].工业用水与废水,2015,46(4):45-51.
    [25] Han Y,Xu Z,Gao C.Ultrathin graphene nanofiltration membrane for water purification[J].Adv Funct Mater,2013,23(29):3693-3700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700