用户名: 密码: 验证码:
相变介质粒径对粉煤灰基高温定形复合相变材料蓄热性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Particle Size of Phase Change Medium on Thermal Storage Performance of Fly Ash-based High Temperature Formstable Composite Phase Change Material
  • 作者:韩金鹏 ; 朱桂花 ; 吕硕 ; 陈浪
  • 英文作者:HAN Jinpeng;ZHU Guihua;LYU Shuo;CHEN Lang;College of Chemical Engineering,North Minzu University;Key Laboratory of Chemical Engineering and Technology,State Ethnic Affairs Commission;College of Mechatronic Engineering,North Minzu University;
  • 关键词:相变介质 ; Al-Si合金 ; 粒径 ; 粉煤灰 ; 高温定形复合相变材料
  • 英文关键词:phase change medium;;Al-Si alloy;;particle size;;fly ash;;high temperature form-stable composite phase change material
  • 中文刊名:MTZH
  • 英文刊名:Coal Conversion
  • 机构:北方民族大学化学与化学工程学院;北方民族大学化学与化学工程学院,国家民委化工技术基础重点实验室;北方民族大学机电工程学院;
  • 出版日期:2019-01-15
  • 出版单位:煤炭转化
  • 年:2019
  • 期:v.42;No.167
  • 基金:国家自然科学基金资助项目(51666001)
  • 语种:中文;
  • 页:MTZH201901011
  • 页数:9
  • CN:01
  • ISSN:14-1163/TQ
  • 分类号:81-89
摘要
以Al-Si共晶合金粉为相变介质、粉煤灰为基体材料,采用混合烧结法制备高温定形复合相变材料,通过密度和增重率的测定及DSC,SEM和XRD分析,探讨烧结过程中导致合金粉性质发生变化的原因,研究合金粉粒径对材料蓄热性能的影响规律。结果表明:烧结过程中,合金粉中Al被氧化并与基体中SiO_2发生反应,破坏了部分合金粉的原有性能,导致相变潜热降低。合金粉粒径越小,自身氧化及与基体间的反应程度越高,材料更为致密但相变潜热偏低。合金粉粒径越大,材料的相变潜热越高但密度偏低。通过调整合金粉中大粒径(40≤d≤74μm)颗粒的含量,可实现相变潜热与密度之间的适度平衡。当合金粉中40≤d≤74μm颗粒质量分数调整为44%时,材料的相变潜热为94.9J/g,密度为1.37g/cm~3,与用原始合金粉所制备的材料相比,相变潜热增加了114%而密度仅降低了3.5%,复合材料的综合性能得以改善,尤其是蓄热性能大幅度提升。
        High temperature form-stable composite phase change materials were prepared by mixed sintering method with Al-Si eutectic alloy powder as phase change medium and fly ash as matrix material.The density,weight gain rate,DSC,SEM and XRD were measured and characterized to study the effect of particle size of phase change media on material properties.The reason for the properties change of the alloy during sintering was discussed.The results show that during the sintering process,Al in the alloy powder is oxidized and reacts with SiO_2 in the matrix,which destroys the original properties of the alloy powder and results in the decrease of latent heat of phase change.The smaller the particle size of the alloy powder,the greater the degree of oxidation and reaction with the matrix,leading to more compact compound but lower latent heat of phase change.On the contrary,larger particle size of the alloy powder contributes to higher latent heat but lower density.Therefore,The appropriate balance between latent heat and density can be achieved by adjusting the content of large particle size(40μm
引文
[1]袁修干,徐伟强.相变蓄热技术的数值仿真及应用[M].北京:国防工业出版社,2006:1-2.YUAN Xiugan,XU Weiqiang.Numerical Simulation and Application of Phase Change Thermal Storage Technology[M].Beijing:National Defense Industry Press,2006:1-2.
    [2]华建社,王建宏,焦勇,等.定形高温复合相变蓄热材料的研究现状及应用[J].热加工工艺,2012,41(24):109-112.HUA Jianshe,WANG Jianhong,JIAO Yong,et al.Research Status and Application of Shape-stabilized High Temperature Phase Change Composite Material for Thermal Energy Storage[J].Hot Working Technology,2012,41(24):109-112.
    [3]任雪潭,曾令可,刘艳春,等.蓄热储能多孔陶瓷材料[J].陶瓷学报,2006,27(2):217-225.REN Xuetan,ZENG Lingke,LIU Yanchun,et al.Porous Ceramic Materials Used for Heat Storage and Accumulation[J].Journal of Ceramics,2006,27(2):217-225.
    [4]李贝,刘道平,杨亮.复合相变蓄热材料研究进展[J].制冷学报,2017,38(4):36-43.LI Bei,LIU Daoping,YANG Liang.Research Progress on Thermal Storage Materials with Composite Phase Change[J].Journal of Refrigeration,2017,38(4):36-43.
    [5]SONG Hongjie,ZHANG Wei,LI Yaqi,et al.Simulation of a Heat Pipe Receiver with High-temperature Latent Heat Thermal Energy Storage During the Charging Process[C]∥Wuhan Zhicheng Times Cultural Development Co,Ltd.Proceedings of 2016International Conference on Automotive Engineering,Mechanical and Electrical Engineering(AEMEE 2016),2016.
    [6]宗学刚.二氧化硅基复合相变储能材料的制备及热性能研究[D].济南:山东轻工业学院,2010.ZONG Xuegang.Study on Preparation and Thermal Properties of Composite Phase Change Materials with SiO2Skeleton[D].Ji’nan:Shandong Institute of Light Industry,2010.
    [7]黄金.高温复合相变蓄热材料及其在工业窑炉蓄热式燃烧系统中的应用[J].冶金能源,2006,25(6):31-35.HUANG Jin.A New High Temperature Phase Change Thermal Storage Composite and Its Application in Regenerative Combustion System[J].Energy for Metallurgical Industry,2006,25(6):31-35.
    [8]尧世文.陶瓷基高温复合相变蓄热材料压制-烧结工艺的研究[D].昆明:昆明理工大学,2007.YAO Shiwen.Study on Compression-sintering Process of Ceramic-based High Temperature Composite Phase Change Material[D].Kunming:Kunming University of Science and Technology,2007.
    [9]SAKAH M,DIAWUO F A,KATZENBACH R,et al.Towards a Sustainable Electrification in Ghana:a Review of Renewable Energy Deployment Policies[J].Renewable and Sustainable Energy Reviews,2017,79:544-557.
    [10]张洋,李月锋,李明广,等.相变储能材料循环热稳定性及与容器相容性研究概况[J].材料导报,2011,25(10):18-23.ZHANG Yang,LI Yuefeng,LI Mingguang,et al.Progress in Cyclic Thermal Stability and Compatibility with Containers of Phase Change Materials[J].Materials Review,2011,25(10):18-23.
    [11]GLUCK A,TAMME R,KALFA H,et al.Development and Testing of Advanced TES Materials for Solar Thermal Central Receier Plants[C].Proceedings ISES Solar World Congress,1991:1943-1948.
    [12]HAHNE E,TAUT U,GROB Y.Salt Ceramic Thermal Energy Storage for Solar Thermal Central Receiver Plants[C].Proceedings ISES Solar World Congress,1991:1937-1942.
    [13]焦勇.Al-Si/Al2O3高温复合相变蓄热材料的制备与性能研究[D].西安:西安建筑科技大学,2012.JIAO Yong.Study on Preparation and Properties of Al-Si/Al2O3 High Temperature Phase Change Heat Storage Materials[D].Xi’an:Xi’an University of Architecture and Technology,2012.
    [14]华建社,李芳,王建宏,等.陶瓷基高温复合相变蓄热材料的制备与性能研究[J].热加工工艺,2014,43(8):78-80.HUA Jianshe,LI Fang,WANG Jianhong,et al.Preparation and Properties of Ceramic Based High Temperature Phase Change Composite[J].Hot Working Technology,2014,43(8):78-80.
    [15]王建宏.粉煤灰基高温复合相变蓄热材料的制备与性能研究[D].西安:西安建筑科技大学,2013.WANG Jianhong.Study on Preparation and Properties of High Temperature Fly Ash Base Phase Change Heat Storage Composite Materials[D].Xi’an:Xi’an University of Architecture and Technology,2013.
    [16]朱桂花,吕硕,韩金鹏.球形粉煤灰基高温定形复合相变蓄热材料的制备与性能[J].煤炭转化,2018,41(2):73-79.ZHU Guihua,LYU Shuo,HAN Jinpeng.Preparation and Properties of Spherical Fly Ash Based Form-stable Composite Phase Change Material for High Temperature Thermal Storage[J].Coal Conversion,2018,41(2):73-79.
    [17]蒋玉齐,梁勇,线全刚,等.SiC粒径对Al2O3/SiC纳米复合陶瓷晶粒尺寸及密度的影响[C]∥中国材料研究学会.全国第二届纳米材料和技术应用会议论文集(上卷).杭州:2001.JIANG Yuqi,LIANG Yong,XIAN Quangang,et al.Effect of SiC Particle Size on Grain Size and Density of Al2O3/SiC Nanocomposite Ceramics[C]∥China Society for Materials Research.Proceedings of the 2nd National Nanomaterials and Technology Application Conference(Roll up).Hangzhou:2001.
    [18]王树海,隋万美,吴建光,等.结构陶瓷粉末原料的理想颗粒尺寸[C]∥94’全国结构陶瓷、功能陶瓷、金属/陶瓷封接学术会议论文集.北京:1994.WANG Shuhai,SUI Wanmei,WU Jianguang,et al.Ideal Particle Size for Structured Ceramic Powder Materials[C]∥94’Proceedings of the National Conference on Structural Ceramics,Functional Ceramics,and Metal/Ceramic Sealing.Beijing:1994.
    [19]赵蓉旭,滕令坡,敖国龙.用马尔文MS2000激光粒度分析仪测定颜填料粉体粒度[J].中国涂料,2014,29(3):64-69.ZHAO Rongxu,TENG Lingpo,AO Guolong.Particle Size Detection of Pigments and Fillers by Laser Particle Size Analyzer Malvern MS2000[J].China Coatings,2014,29(3):64-69.
    [20]钱效林,郝小勇,王荣杰.粒径测试技术及粒径分布对陶瓷生产的影响[J].佛山陶瓷,2002,12(3):4-6.QIAN Xiaolin,HAO Xiaoyong,WANG Rongjie.Effect of Particle Size Testing Technology and Particle Size Distribution on Ceramic Production[J].Foshan Ceramics,2002,12(3):4-6.
    [21]范锦忠.烧结粉煤灰陶粒特点和主要性能[J].砖瓦,2006(10):147-149.FAN Jinzhong.Characteristics and Main Properties of Sintered Fly Ash Ceramsite[J].Brick-tile,2006(10):147-149.
    [22]沈学忠.铝硅二元共晶合金储热循环稳定性及其对容器的表面处理研究[D].广州:广东工业大学,2007.SHEN Xuezhong.Research on Thermal Storage Cycle Stability of Binary Eutectic Al-Si Alloy and Surface Treatment to Container[D].Guangzhou:Guangdong University of Technology,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700