用户名: 密码: 验证码:
超疏水/超双疏表面自修复方式的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on the self-healing on superhydrophobic/superamphiphobic surface
  • 作者:梁婷 ; 范振忠 ; 刘庆旺 ; 王继刚 ; 才力 ; 付沅峰 ; 仝其雷
  • 英文作者:LIANG Ting;FAN Zhenzhong;LIU Qingwang;WANG Jigang;CAI Li;FU Yuanfeng;TONG Qilei;College of Petroleum Engineering,Northeast Petroleum University;
  • 关键词:超疏水/超双疏表面 ; 自修复 ; 低表面能物质 ; 表面微观结构
  • 英文关键词:superhydrophobic/superamphiphobic surface;;self-healing;;low surface energy substances;;surface microstructure
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:东北石油大学石油工程学院;
  • 出版日期:2019-07-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.334
  • 基金:国家自然科学基金(51774089)
  • 语种:中文;
  • 页:HGJZ201907020
  • 页数:9
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:178-186
摘要
超疏水/超双疏材料存在耐久性和稳定性的问题,因此很大程度影响了超疏水/超双疏材料的实际应用。受自然界中荷叶、三叶草等超疏水表面在受到破坏后,表面粗糙结构和表面组成可以恢复直到生物死亡的启发,科研学者通过不断探索研究出修复超疏水/超双疏材料的一些方式。本文从低表面能物质和表面微观结构的自修复角度出发,综述了影响超疏水/超双疏表面的自修复方式。当超疏水/超双疏表面受到物理破坏或者化学破坏时,失去超疏水以及超疏油性能,在温度、相对湿度、机械、UV等诱导条件下,低表面能物质迁移至表面完成自修复过程以及表面微观结构的自修复,从而使超疏水以及超疏油性能得以恢复。价格低廉的环保材料和系统性地研究自修复的机理是将来超疏水/超双疏自修复材料的主要研究方向。
        The practical application of superhydrophobic/superamphiphobic materials has been greatly limited due to their insufficient durability and stability. On the other hand, the surface roughness and surface composition of many natural products such as lotus leaf and clover can be restored after the damage. Such observations have inspired researchers to explore similar methods to repair superhydrophobic/superamphiphobic materials. In this paper, from the perspective of the self-healing of low energy materials and surface microstructures, the ways that affect the self-healing superhydrophobic/superamphiphobic surfaces were reviewed. The superhydrophobic and superoleophobic properties would be lost when the superhydrophobic/superamphiphobic surface is physically destroyed or chemically damaged. By carefully tuning temperature, relative humidity, mechanical and UV, the self-healing of low surface energy substances and the surface microstructure can be realized, and the superhydrophobic and superoleophobic properties can be restored. The main research directions for superhydrophobic/superamphiphobic self-healing materials are on the low-cost environmentally-friendly materials and systematic research of the mechanism of self-healing process.
引文
[1] GUO Z, LIU W. Biomimic from the superhydrophobic plant leaves in nature:binary structure and unitary structure[J]. Plant Science, 2007,172(6):1103-1112.
    [2] ZHENG Y, BAI H, HUANG Z, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281):640-643.
    [3] BORMASHENKO E, BORMASHENKO Y, STEIN T, et al. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition[J]. Journal of Colloid&Interface Science, 2007, 311(1):212-216.
    [4] YIN W, ZHENG Y L, LU H Y, et al. Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs[J]. Applied Physics Letters, 2016, 109(16):163701.
    [5] WANG N, XIONG D, DENG Y, et al. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties[J]. ACS Applied Materials&Interfaces,2015, 7(11):6260-6272.
    [6] WANG Y, ZHU Y, ZHANG C, et al. Transparent, superhydrophobic surface with varied surface-tension responsiveness in wettability based on tunable porous silica structure for gauging liquid surface tension[J].ACS Applied Materials&Interfaces, 2017, 9(4):4142-4150.
    [7] VILARóI, YAGüE J L, BORROS S. Superhydrophobic copper surfaces with anti-corrosion properties fabricated by solventless CVD methods[J]. ACS Applied Materials&Interfaces, 2016, 9(1):1057-1065.
    [8] LI Y, WANG X, SUN J. ChemInform abstract:layer-by-layer assembly for rapid fabrication of thick polymeric films[J]. Chemical Society Reviews, 2012, 41(18):5998-6009.
    [9] ZHANG Y, YANG S, WANG S, et al. Engineering high-performance MoO2-basednanomaterialswithsupercapacityandsuperhydrophobicity by tuning the raw materials source[J]. Small, 2018,14(25):e1800480.
    [10] DONG S, HUANG C, YOU H, et al. Preparation of superhydrophobic surface with a novel sol-gel system[J]. Applied Surface Science, 2011,258(2):928-934.
    [11] LU Y, SATHASIVAM S, SONG J, et al. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil[J].Science, 2015, 347(6226):1132-1135.
    [12] WU G, AN J, TANG X, et al. A versatile approach towards multifunctional robust microcapsules with tunable, restorable, and solvent-proof superhydrophobicity for self-healing and self-cleaning coatings[J]. Advanced Functional Materials, 2015, 24(43):6751-6761.
    [13] YOON H, KIM H Y, LATTHE S S, et al. A highly transparent selfcleaning superhydrophobic surface by organosilane-coated alumina particles deposited via electrospraying[J]. Journal of Materials Chemistry A, 2015, 3(21):11403-11410.
    [14] SARANADHI D, CHEN D, KLEINGARTNER J A, et al. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface[J]. Science Advances, 2016, 2(10):e1600686.
    [15] TUO Y, CHEN W, ZHANG H, et al. One-step hydrothermal method to fabricate drag reduction superhydrophobic surface on aluminum foil[J].Applied Surface Science, 2018,446(15):230-235.
    [16] HAASE M F, GRIGORIEV D O, M?HWALD H, et al. Development of nanoparticle stabilized polymer nanocontainers with high content of the encapsulated active agent and their application in water-borne anticorrosive coatings[J]. Advanced Materials, 2012, 24(18):2429-2435.
    [17] WANG G, SHUAI L, WEI S, et al. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity[J]. Scientific Reports, 2016, 6:20933.
    [18] WANG Z, TANG Y, LI B. Excellent wetting resistance and antifouling performance of PVDF membrane modified with superhydrophobic papillae-like surfaces[J]. Journal of Membrane Science, 2017,540(15):401-410.
    [19] XUE C H, GUO X J, MA J Z, et al. Fabrication of robust and antifouling superhydrophobic surfaces via surface-initiated atom transfer radical polymerization[J]. ACS Applied Materials&Interfaces, 2015, 7(15):8251-8259.
    [20] WANG B, LIANG W, GUO Z, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation:a new strategy beyond nature[J]. Chemical Society Reviews, 2015, 44(1):336-361.
    [21] TAO M, XUE L, LIU F, et al. An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation[J]. Advanced Materials, 2014, 26(18):2943-2948.
    [22] XUE C H, LI Y, HOU J L, et al. Self-roughened superhydrophobic coatings for continuous oil-water separation[J]. Journal of Materials Chemistry A, 2015, 3(19):10248-10253.
    [23] LI Y, LI L, SUN J. Bioinspired self-healing superhydrophobic coatings[J]. Angewandte Chemie, 2010, 122(35):6265-6269.
    [24] JIN H, TIAN X, IKKALA O, et al. Preservation of superhydrophobic and superoleophobic properties upon wear damage[J]. Applied Materials&Interfaces, 2013, 5(3):485-488.
    [25] KULINICH S A, HONDA M, ZHU A L, et al. The icephobic performance of alkyl-grafted aluminum surfaces[J]. Soft. Matter.,2015, 11(5):856-861.
    [26] DENG X, MAMMEN L, ZHAO Y, et al. Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules[J]. Advanced Materials, 2011, 23(26):2962-2965.
    [27] TUUKKA V, CHRIS B, PIERS A, et al. Mechanically durable superhydrophobic surfaces[J]. Advanced Materials, 2011, 23(5):673-678.
    [28] ZHAO Y, XU Z, WANG X, et al. Photoreactive azido-containing silica nanoparticle/polycation multilayers:durable superhydrophobic coating on cotton fabrics[J]. Langmuir the ACS Journal of Surfaces&Colloids,2012, 28(15):6328-6335.
    [29] ZIMMERMANN J, REIFLER F A, FORTUNATO G, et al. A simple,one-step approach to durable and robust superhydrophobic textiles[J].Advanced Functional Materials, 2010, 18(22):3662-3669.
    [30] DENG B, CAI R, YU Y, et al. Laundering durability of superhydrophobic cotton fabric[J]. Advanced Materials, 2010, 22(48):5473-5477.
    [31] HUA Z, WANG H, NIU H, et al. Fluoroalkyl silane modified silicone rubber/nanoparticle composite:a super durable, robust superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24(18):2409-2412.
    [32] WANG X, LIU X, ZHOU F, et al. Self-healing superamphiphobicity[J]. Chemical Communications, 2011, 47(8):2324-2326.
    [33] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805(95):65-87.
    [34] NISHINO T, MEGURO M, NAKAMAE K, et al. The lowest surface free energy based on-CF3alignment[J]. Langmuir, 1999, 15(13):4321-4323.
    [35] XUE C H, ZHANG Z D, ZHANG J, et al. Lasting and self-healing superhydrophobic surfaces by coating of polystyrene/SiO2nanoparticles and polydimethylsiloxane[J]. Journal of Materials Chemistry A, 2014, 2(36):15001-15007.
    [36] WANG H, XUE Y, DING J, et al. Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinateddecyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane[J]. Angewandte Chemie, 2011, 50(48):11433-11436.
    [37] WANG H, ZHOU H, GESTOS A, et al. Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages[J]. ACS Applied Materials&Interfaces, 2013, 5(20):10221-10226.
    [38] WANG H, ZHOU H, GESTOS A, et al. Robust, electro-conductive,self-healing superamphiphobic fabric prepared by one-step vapourphase polymerisation of poly(3, 4-ethylenedioxythiophene)in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane and fluorinated alkyl silane[J]. Soft Matter, 2012, 9(1):277-282.
    [39] LI B, ZHANG J. Durable and self-healing superamphiphobic coatings repellent even to hot liquids[J]. Chemical Communications, 2016,52(13):2744-2747.
    [40] DIKI?T, MING W, VAN BENTHEM R A T M, et al. Selfreplenishing surfaces[J]. Advanced Materials, 2012, 24(27):3701-3704.
    [41] DIKI?T, MING W, THüNE P C, et al. Well-defined polycaprolactone precursors for low surface-energy polyurethane films[J]. Journal of Polymer Science Part A, Polymer Chemistry, 2008, 46(1):218-227.
    [42] LI D, GUO Z. Stable and self-healing superhydrophobic MnO2@fabrics:applications in self-cleaning, oil/water separation and wear resistance[J]. Journal of Colloid&Interface Science, 2017, 503:124-130.
    [43] XUE C H, BAI X, JIA S T. Robust, self-healing superhydrophobic fabrics prepared by one-step coating of PDMS and octadecylamine[J].Scientific Reports, 2016, 6:27262.
    [44] CHEN K, ZHOU S, WU L. Facile fabrication of self-repairing superhydrophobic coatings[J]. Chemical Communications, 2014, 50(80):11891-11894.
    [45] CHEN K, ZHOU S, YANG S, et al. Fabrication of all-water-vased self-repairing superhydrophobic coatings based on UV-responsive microcapsules[J]. Advanced Functional Materials, 2015, 25(7):1035-1041.
    [46] WU L, CONG Y, CHEN K, et al. Synthesis of pH and UV dualresponsive microcapsules with high loading capacity and their application for self-healing hydrophobic coatings[J]. Journal of Materials Chemistry A, 2015, 3(37):19093-19099.
    [47] CHEN K, ZHOU S. Fabrication of ultraviolet-responsive microcapsules via Pickering emulsion polymerization using modified nano-silica/nano-titania as Pickering agents[J]. RSC Advances, 2015,5(18):13850-13856.
    [48] ZHU D, LU X, LU Q. Electrically conductive PEDOT coating with self-healingsuperhydrophobicity[J]. Langmuir, 2014, 30(16):4671-4677.
    [49] LIU Q, WANG X, YU B, et al. Self-healing surface hydrophobicity by consecutive release of hydrophobic molecules from mesoporous silica[J]. Langmuir, 2012, 28(13):5845-5849.
    [50] LIU Y, LIU Y, HU H, et al. Mechanically induced self-healing superhydrophobicity[J]. Journal of Physical Chemistry C, 2015, 119(13):7109-7114.
    [51] YIN X, WANG D, BO Y, et al. Rabbit hair regenerative superhydrophobicity[J]. RSC Advances, 2013, 4(7):3611-3614.
    [52] DENG X, MAMMEN L, BUTT H J, et al. Candle soot as a template for a transparent robust superamphiphobic coating[J]. Science, 2012, 335(6064):67-70.
    [53] JIN H, TIAN X, IKKALA O, et al. Preservation of superhydrophobic and superoleophobic properties upon wear damage[J]. ACS Applied Materials&Interfaces, 2013, 5(3):485-488.
    [54] DING C D, LIU Y, WANG M D, et al. Self-healing, superhydrophobic coating based on mechanized silica nanoparticles for reliable protection of magnesium alloys[J]. Journal of Materials Chemistry A,2016, 4(21):8041-8052.
    [55] CHEN T, YANG N, FU J. Controlled release of cargo molecules from hollow mesoporous silica nanoparticles based on acid and base dualresponsive cucurbit [7]uril pseudorotaxanes[J]. Chemical Communications, 2013, 49(58):6555-6557.
    [56] YAMANAKA S A, DUNN B, VALENTINE J S, et al. Nicotinamide adenine dinucleotide phosphate fluorescence and absorption monitoring of enzymic activity in silicate sol-gels for chemical sensing applications[J]. Journal of the American Chemical Society, 1995, 117(35):9095-9096.
    [57] KOO H Y, LEE H J, KIM J K, et al. UV-triggered encapsulation and release from polyelectrolyte microcapsules decorated with photoacid generators[J]. Journal of Materials Chemistry, 2010, 20(19):3932-3937.
    [58] LONG Y, LIU C, ZHAO B, et al. Bio-inspired controlled release through compression-relaxation cycles of microcapsules[J]. NPG Asia Materials, 2015, 7:e148.
    [59] LI J, LIANG J, LI L, et al. Healable capacitive touch screen sensors based on transparent composite electrodes comprising silver nanowires and a furan/maleimide Diels-Alder cycloaddition polymer[J]. ACS Nano, 2014, 8(12):12874-12882.
    [60] LAI J, MEI J, JIA X, et al. A stiff and healable polymer based on dynamic-covalent boroxine bonds[J]. Advanced Materials, 2016, 28(37):8277-8282.
    [61] JEON I, CUI J, ILLEPERUMA W R K, et al. Extremely stretchable and fast self-healing hydrogels[J]. Advanced Materials, 2016, 28(23):4678-4683.
    [62] HARING M, DIAZ D D. Supramolecular metallogels with bulk selfhealing properties prepared by in situ metal complexation[J]. Chemical Communications, 2016, 52(89):13068-13081.
    [63] LUO F, SUN T L, NAKAJIMA T, et al. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels[J].Advanced Materials, 2015, 27(17):2722-2727.
    [64] PURETSKIY N, STOYCHEV G, SYNYTSKA A, et al. Surfaces with self-repairable ultrahydrophobicity based on self-organizing freely floating colloidal particles[J]. Langmuir the ACS Journal of Surfaces&Colloids, 2012, 28(8):3679-3682.
    [65] MANNA U, LYNN D M. Restoration of superhydrophobicity in crushed polymer films by treatment with water:self-healing and recovery of damaged topographic features aided by an unlikely source[J]. Advanced Materials, 2013, 25(36):5104-5108.
    [66] LV T, CHENG Z, ZHANG E, et al. Self-restoration of superhydrophobicity on shape memory polymer arrays with both crushed microstructure and damaged surface chemistry[J]. Small,2017, 13(4):1503402.
    [67] LI B, ZHANG J. Polysiloxane/multiwalled carbon nanotubes nanocomposites and their applications as ultrastable, healable and superhydrophobic coatings[J]. Carbon, 2015, 93:648-658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700