用户名: 密码: 验证码:
基于湍涡耗散的穿孔板消声器气流再生噪声模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flow Regenerated Noise Model of Perforated Plate Muffler Based on Turbulence Eddy Dissipation
  • 作者:赵海军 ; 梁凯 ; 李洪亮 ; 陈达亮 ; 宋伟志 ; 甄旭东
  • 英文作者:Zhao Haijun;Liang Kai;Li Hongliang;Chen Daliang;Song Weizhi;Zhen Xudong;National Joint Engineering Research Center of Intelligent Vehicle Infrastructure Cooperation and Safety Technology,Tianjin University of Technology and Education;Department of Mechanical Engineering,Luoyang Institute of Science and Technology;Automotive Engineering Research Institute,China Automotive Technology & Research Center Company Limited;
  • 关键词:穿孔板消声器 ; 气流再生噪声 ; 总声功率级 ; 湍涡耗散 ; 穿孔板消声单元 ; 结构参数
  • 英文关键词:perforated phate muffler;;flow regenerated noise;;total sound power level;;turbulence eddy dissipation;;perforated plate muffler unit;;structural parameters
  • 中文刊名:NRJX
  • 英文刊名:Transactions of CSICE
  • 机构:天津职业技术师范大学智能车路协同与安全技术国家地方联合工程研究中心;洛阳理工学院机械工程学院;中国汽车技术研究中心有限公司汽车工程研究院;
  • 出版日期:2019-03-25
  • 出版单位:内燃机学报
  • 年:2019
  • 期:v.37;No.182
  • 基金:国家自然科学基金资助项目(U1604141);; 新开普教育部产学合作协同育人资助项目(201801097003)
  • 语种:中文;
  • 页:NRJX201902011
  • 页数:7
  • CN:02
  • ISSN:12-1086/TK
  • 分类号:86-92
摘要
气流再生噪声对消声器性能和声品质影响大,而湍涡耗散是消声器内部流场分布重要体现.利用流场分析及量纲平衡提出了湍涡耗散分布特征系数,建立了关于该系数的穿孔板消声单元气流再生噪声总声功率模型,求解了模型参数,并分析了影响因素.结果表明:随着穿孔板消声单元进口气流速度的增加,气流再生噪声总声功率级快速增大,斜率都超过了1;随着湍涡耗散的增大,气流再生噪声总声功率级减小,尤其当湍涡耗散小于1.0×10~5m~2/s~3,气流再生噪声总声功率级快速下降,当湍涡耗散大于1.0×10~5m~2/s~3时,气流再生噪声总声功率级下降速度趋于平缓,该模型可以定量分析穿孔板消声单元结构参数对气流再生噪声的影响规律,穿孔板消声单元气流再生噪声总声功率级随气流分布速度增大而显著增大.
        Flow regenerated noise has huge effects on muffler characteristics and sound quality. The turbulence eddy dissipation is an important expression of the muffler internal flow field. A ratio of turbulence eddy dissipation was proposed by flow field computation and dimensional balance,and a total sound power model on the ratio and the muffler flow regenerated noise was built and model parameters and their effects were analyzed. Results show that the total sound level of the flow regenerated noise quickly increases and its gradient is more than 1 when the flow distribution velocity rises. With the increase of turbulence eddy dissipation the total sound level reduces,especially when the turbulence eddy dissipation is less than 1.0×10~5 m~2/s~3,the total sound level rapidly drops down. Furthermore,the total sound level slowly reduces when the turbulence eddy dissipation is more than 1.0×10~5 m~2/s~3. This indicates that the model can conveniently and quantitatively analyze the influence of structural parameters of perforated plate muffler unit on the flow regeneration noise. Flow regeneration noise power of the perforated plate muffler unit increases heavily with the development of flow distribution velocity.
引文
[1]赵海军.内燃机消声器气流再生噪声研究[D].重庆:重庆大学机械工程学院,2010.
    [2]孙雪迎,苏方旭,张艳青.整车排气系统对汽油机动力性的影响[J].内燃机学报,2018,36(6):538-545.
    [3]Kim C S,Park S Y.A study on noise characteristics of an exhaust after-treatment system for agricultural machinery engines to replace the main muffler[J].Advances and Application in Fluid Mechanics,2014,15(1):59-69.
    [4]Kunz F H.Semi-empirical model for flow noise prediction on intake and exhaust systems[C]//SAE Paper.Detroit,Michigan,USA,1999,1999-01-1654.
    [5]Desantes J M,Torregrosa A J,Broatch A.Experiments on flow noise generation in simple exhaust geometries[J].Acta Acustica United with Acoustica,2001,87(1):46-55.
    [6]Ashcroft G B,Takeda K,Zhang X.A numerical investigation of the noise radiated by a turbulent flow over a cavity[J].Journal of Sound and Vibration,2003,265:43-60.
    [7]Jebasinski R,Leng S,Jess M,et al.Investigation on whistle noise in automotive exhaust system mufflers[C]//SAE Paper.Detroit,Michigan,USA,2005,2005-01-2361.
    [8]赵海军,邓兆祥,李沛然.穿孔管式消声单元气流再生噪声总功率模型[J].振动与冲击,2011,30(8):118-122.
    [9]Mak H,Balabani S.Near field characteristics of swirling flow past a sudden expansion[J].Chemical Engineering Science,2007,62(1):6726-6746.
    [10]刘胜吉,曾瑾瑾,韩维维,等.基于CFD及稳流试验的柴油机进/排气系统的性能[J].内燃机学报,2016,34(1):68-73.
    [11]Peter D,Bruno W,Pieter B,et al.Prediction of noise radiation from basic configuration of landing gears by means of computational aeroacoustic[J].Aerospace Science and Technology,2007,11:451-458.
    [12]赵海军,邓兆祥.消声单元产生气流再生噪声的流场分布特征[J].内燃机学报,2011,29(4):378-383.
    [13]赵海军,李洪亮,张玉书,等.基于湍流分布特征系数的消声器压力损失模型[J].内燃机学报,2018,36(3):274-280.
    [14]Bogey C,Bailly C.Computation of a high reynolds number jet and its radiated noise using large eddy simulation based on explicit filtering[J].Computers&Fluids,2006,35(10):1344-1358.
    [15]McGovern J.Technical note:Friction factor diagrams for pipe flow[J].Dublin Institute of Technology,2011,11-15.
    [16]李秋实,徐飞,李志平.一种包含运动边界的高精度流场数值计算方法[J].航空学报,2014,35(7):1815-1824.
    [17]Wang D,Yang S Z.Flow field optimization of a cabriolet by using CFD numerical simulation method[J].Transactions of Beijing Institute of Technology,2016,36(1):126-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700