用户名: 密码: 验证码:
陶瓷超塑性变形机理研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of superplastic deformation mechanism for ceramics
  • 作者:骆俊廷 ; 李洪波 ; 顾勇飞 ; 徐彦霞
  • 英文作者:LUO Jun-ting;LI Hong-bo;GU Yong-fei;XU Yan-xia;Education Ministry Key Laboratory of Advanced Forging & Stamping Technology and Science,Yanshan University;
  • 关键词:陶瓷 ; 超塑性 ; 变形机理 ; 晶界滑移
  • 英文关键词:ceramic;;superplasticity;;deformation mechanism;;grain boundary sliding
  • 中文刊名:SXGC
  • 英文刊名:Journal of Plasticity Engineering
  • 机构:燕山大学先进锻压成形技术与科学教育部重点实验室;
  • 出版日期:2019-04-25 17:26
  • 出版单位:塑性工程学报
  • 年:2019
  • 期:v.26;No.135
  • 基金:国家自然科学基金资助项目(51775479);; 河北省自然科学基金资助项目(E2017203046)
  • 语种:中文;
  • 页:SXGC201902013
  • 页数:7
  • CN:02
  • ISSN:11-3449/TG
  • 分类号:103-109
摘要
由于微纳米陶瓷材料在超塑性成形方面的潜在应用,近年来,关于陶瓷材料超塑性的研究已成为陶瓷领域研究的热点之一。关于陶瓷超塑性变形机理,目前普遍认为微观结构对陶瓷超塑性变形产生重要影响,细小晶粒之间晶界相互滑移在陶瓷超塑性变形过程中发挥重要作用,并且在改善和发展纳米陶瓷的超塑性方面已经取得了明显的进步。大多数学者对于陶瓷超塑性的变形机理的研究,目前还主要集中于晶粒局部变形的一些基本原则。文章在总结陶瓷超塑性影响因素和晶界滑移模型的基础上,以研究的氮化物陶瓷为例,对陶瓷超塑性变形机理进行了分析与探讨。
        In recent years,superplasticity in ceramics has become a research hotspot in the field of ceramics because of the potential applications of superplastic forming for micro and nano-ceramics. On the superplastic deformation mechanism of ceramics,it is generally accepted that the microstructure has an important effect on the superplasticity and grain boundary sliding among fine grains plays an important role in the process. In addition,remarkable progress has been made in improving and developing superplasticity of nano-ceramics.Most scholars have studied the deformation mechanism of superplasticity in ceramics,but at present they mainly focus on some basic principles of local grain deformation. As an example of nitride ceramics researching,the superplastic deformation mechanism was analyzed and discussed based on summarizing the influence factors and grain boundary sliding model.
引文
[1] WAKAI F. Superplasticity of yttria-stabilized tetragonal Zr O2polycrystals[J]. Keramische Zeitschrift,1987,39(7):452-455.
    [2]张凯锋,骆俊廷,陈国清,等.纳米陶瓷超塑加工成形的研究进展[J].塑性工程学报,2003,10(1):1-3.ZHANG Kaifeng,LUO Junting,CHEN Guoqing,et al. The research and development of nanophase ceramic superplastic forming[J]. Journal of Plasticity Engineering,2003,10(1):1-3.
    [3]王守玉,骆俊廷.氮化硅陶瓷超塑性拉深成形规律研究[J].塑性工程学报,2006,13(5):106-109.WANG Shouyu,LUO Junting. Investigation of silicon nitride's superplastic deep-drawing forming rules[J]. Journal of Plasticity Engineering,2006,13(5):106-109.
    [4] CHEN G Q,ZHANG K F,HAN W B,et al. Synthesis and enhanced superplasticity of the zirconia-dispersed alumina nanocomposite[J]. Journal of Materials Science and Technology,2005,21(1):79-82.
    [5]王守玉,骆俊廷.纳米Si2N2O-Sialon陶瓷超塑性挤压试验与模拟研究[J].塑性工程学报,2011,13(5):106-109.WANG Shouyu,LUO Junting. Experimental investigation and finite element simulation on superplastic extrusion of nano-structured Si2N2O-Sialon ceramic[J]. Journal of Plasticity Engineering,2011,13(5):106-109.
    [6] LUO J T,ZHANG Q,LI H B. Superplastic extrusion of nanostructured Si2N2O-Sialon[J]. Materials Science Forum,2007,551-552:497-500.
    [7]陈国清,朱晓丽,王康.氧化锆陶瓷超塑性变形行为及机理[J].现代技术陶瓷,2017,10(6):433-439.CHEN Guoqing,ZHU Xiaoli,WANG Kang. Superplastic deformation behavior and mechanism of zirconia ceramics[J]. Advanced Ceramics,2017,10(6):433-439.
    [8]祖宇飞,陈国清,付雪松.氧化物陶瓷高速超塑性研究进展[J].中国科学:技术科学,2015,11(4):377-388.ZU Yufei,CHEN Guoqing,FU Xuesong. Research progress in high-speed superplasticity of oxide ceramics[J]. Science China:Technological Sciences,2015,11(4):377-388.
    [9]骆俊廷,李洪波,张凯锋.超细晶氮化硅陶瓷超塑性成形研究[J].中国机械工程,2005,16(s):326-328.LUO Junting,LI Hongbo,ZHANG Kaifeng. Superplastic forming of super-fine grained silicon nitride[J]. China Mechanical Engineering,2005,16(s):326-328.
    [10] WANANURUKSAWONG R,SHINODA Y,AKATSU T,et al. Highstrain-rate superplasticity in nanocrystalline silicon nitride ceramics under compression[J]. Scripta Materialia,2015,103:22-25.
    [11] WAKAI F. Grain boundary dynamics in ceramics superplasticity[J].Nanomaterials-From Research to Applications,2006,474:297-314.
    [12] ASHBY M F,VERRALL R A. Diffusion-accommodated flow and superplasticity[J]. Acta Metallurgica,1973,21(2):149-163.
    [13] GIFKINS R C. Grain-boundary sliding and its accommodation during creep and superplasticity[J]. Metallurgical Transactions A,1976,7A(8):1225-1230.
    [14] WAKSI F,SHINODA Y,ISHIHARA S,et al. Topological transformation of grains in superplasticity-like deformation[J]. Acta Materialia,2002,50(5):1177-1186.
    [15] MUKHERJEE A K. Superplastic behaviour of ultrafine-grained Ti-6Al-4V alloys[J]. Materials Science and Engineering A,2002,322(1-2):8-325.
    [16] PRIMDAHL S,THOLEN A,LANGDON T G. Microstructural examination of a superplastic yttria-stabilized zirconia:implications for the superplasticity mechanism[J]. Acta Metallurgica et Materialia,1995,43(3):1211-1218.
    [17] OWEN D M,CHOKSHI A H. High temperature mechanical characteristics of superplastic 3mol%yttria-stabilized zirconia[J].Acta Materialia,1998,46(2):667-679.
    [18] BRAVO-LEON A, JIMENEZ-MELENDO, DOMFNGUEZ-RODRFGUEZ A. High temperature plastic deformation at very low stresses of fine-grained Y2O3-partially stabilized Zr O2[J]. Scripta Materialia,1996,35(4):551-555.
    [19] BERBON M Z,LANGDON T G. Examination of the flow process in superplastic yttria-stabilized tetragonal zirconia[J]. Acta Materialia,1999,47(8):2485-2495.
    [20] MOHAMED A. Interpretation of superplastic flow in terms of a thershold stress[J]. J. Nater. Sci.,1983,18:582-592.
    [21] SEIDENSTIKER I,MAYO M J. Dopants and liquid phase in superp lastic ceramics[C]//The Minerals Metals and Materials Society,Warrendale,PA,1997,25:643-652.
    [22] KONDO T,TAKIGAWA Y,IKUMA T,et al. Critical assessments of tensile ductility in superplastic TZP and Ti O2-doped TZP[J].Materials Transactions,JIM,1998,39(11):1108-1114.
    [23] IKUMA T,THAVORNITI P,SAKUMA T. Solute segregation at grain boundaries in superplastic SiO2-doped TZP[J]. Acta Materialia,1997,45(12):5275-5284.
    [24] RAJ R,CHYUNG C K. Solution-precipitatition creep in glass ceramics[J]. Acta Metallurgica,1981,29(1):159-166.
    [25] WAKAI F. Step model of solution-precipitation creep[J]. Acta Metallurgica et Materialia,1994,42(4):1163-1172.
    [26] MELENDEZ-MARTINEZ J J, DOMINGUEZ-RODRIGURZ A.Creep of silicon nitride[J]. Progress in Materials Science,2004,49(7):19-107.
    [27] KONDO N,OHJI T,WAKAI E. Strengthening and toughening of silicon nitride by superplastic deformation[J]. Journal of the American Ceramic Society,1998,81(3):713-716.
    [28]骆俊廷.非晶纳米氮化硅粉体液相烧结复相陶瓷微观组织与性能[D].哈尔滨:哈尔滨工业大学,2005.LUO Junting. Microstructure and properties of multiphase ceramic sintered by amorphous silicon nitride powders liquid phase[D].Harbin:Harbin Institute of Technology,2005.
    [29]顾勇飞,骆俊廷,文雅丽,等.纳米Si2N2O-Sialon陶瓷齿轮超塑性锻造研究[J].中国机械工程,2012,23(13):1620-1628.GU Yongfei,LUO Junting,WEN Yali,et al. Superplastic forging of nanostructured Si2N2O-Sialon ceramic gear[J]. China Mechanical Engineering,2012,23(13):1620-1628.
    [30] KONDO N,OHJI T,WAKAI F. Indentation cracks in superplastically deformed silicon nitride consisting of strongly aligned rodshaped grains[J]. Materials Science and Engineering:A,1998,244(2):161-167.
    [31] KONDO N,SUZUKI Y,OHJI T,et al. Change in stress sensitity and activation energy during superplastic deformation of silicon nitride[J]. Materials Science and Engineering A,1999,268(1):141-146.
    [32]徐彦霞.纳米Si2N2O-Sialon陶瓷超塑性和超塑性成形研究[D].秦皇岛:燕山大学,2010.XU Yanxia. Superplasticity and superplastic forming of nano-sized Si2N2O-sialon composites candidate[D]. Qinhuangdao:Yanshan University,2010.
    [33] LUO J T,LIU R P. Effect of additives on the sintering of amorphous nano-sized silicon nitride powders[J]. Journal Wuhan University of Technology:Materials Science Edition,2009,24(4):537-539.
    [34] ZGALAT-LOZYNSKYY O,ANDRZEJCZUK M,VARCHENKO V,et al. Superplastic deformation of Si3N4based nanocomposites reinforced by nanowhiskers[J]. Materials Science&Engineering A,2014,606:144-149.
    [35] WANANURUKSAWONG R,SHINODA Y,AKATSU T,et al.High-strain-rate superplasticity in nanocrystalline silicon nitride ceramics under compression[J]. Scripta Materialia,2015,103:22-25.
    [36] RETAMAL C,LAGOS M,MOSHTAGHIOUN B M,et al. A new approach to the grain-size dependent transition of stress exponents in yttria tetragonal zirconia polycrystals. The theoretical limit for superplasticity in ceramics[J]. Ceramics International,2016,42(4):4918-4923.
    [37] WANG Z C,RIDLEY N,DAVIES T J. Cavitation behaviour in fine grain 3Y-TZP during tensile and compressive superplastic flow[J].Journal of Materials Science,1999,34(11):2695-2702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700