用户名: 密码: 验证码:
水热法制备Zn_(0.2)Cd_(0.8)S/rGO材料及其光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photocatalytic property of Zn_(0.2)Cd_(0.8)S/rGO materials prepared by a hydrothermal method
  • 作者:殷立雄 ; 张峰 ; 李慧敏 ; 白培杰 ; 宋佳琪
  • 英文作者:YIN Li-xiong;ZHANG Feng;LI Hui-min;BAI Pei-jie;SONG Jia-qi;School of Materials Science and Engineering, Shaanxi University of Science & Technology;
  • 关键词:Zn_(0.2)Cd_(0.8)S固溶体 ; 还原氧化石墨烯 ; 光催化剂 ; 可见光驱动 ; 制氢
  • 英文关键词:Zn_(0.2)Cd_(0.8)S solid solution;;reduced graphene oxide;;photocatalyst;;visible-light-driven;;H_2 productio
  • 中文刊名:XBQG
  • 英文刊名:Journal of Shaanxi University of Science & Technology
  • 机构:陕西科技大学材料科学与工程学院;
  • 出版日期:2019-05-29
  • 出版单位:陕西科技大学学报
  • 年:2019
  • 期:v.37;No.184
  • 基金:国家自然科学基金项目(51541204);; 陕西省科技厅工业科技攻关计划项目(2016GY-199)
  • 语种:中文;
  • 页:XBQG201903021
  • 页数:7
  • CN:03
  • ISSN:61-1080/TS
  • 分类号:136-141+158
摘要
以还原氧化石墨烯(rGO)作为载体,通过简单的两步水热法合成了一种三维组装的Zn_(0.2)Cd_(0.8)S/rGO复合材料,其在可见光下可有效地通过水裂解产生氢气.采用XRD、SEM、TEM、Raman和紫外可见漫反射等手段,分析研究了ZCS-G(x)复合材料的物相组成和显微结构,并对其进行了光催化产氢性能测试.研究结果表明,样品ZCS-G(1.5)的产氢率是在相同反应条件下所生成Zn_(0.2)Cd_(0.8)S固溶体材料(ZCS-G(0))的2.64倍;在对其进行循环产氢测试时,发现在相同的反应条件下循环测试3圈后(12 h)性能几乎没有下降,说明样品ZCS-G(1.5)具备优异的稳定性.因此,ZCS-G(1.5)材料在可见光照射下可以用作一种具有应用前景的水裂解产氢光催化剂.
        In this study,the three-dimensional self-assembled Zn_(0.2)Cd_(0.8)S/rGO material synthesized by a simple two-step hydrothermal method using rGO as the carrier,which can generate hydrogen by water splitting under visible light.The phase composition and microstructure of ZCS-G(x) composites were analyzed by XRD,SEM,TEM and Raman,and their photocatalytic H_2-production properties were tested.The hydrogen production rate of the sample ZCS-G(1.5) is 2.64 times of the sample(ZCS-G(0)),a solid solution material Zn_(0.2)Cd_(0.8)S that prepared at the same reaction conditions.Further,we conducted a cyclic test and found that it still have excellent stability after 3 cycles(12 h) of cyclic test under the same reaction condition,it indicates ZCS-G(1.5) sample has excellent stability.The above results show that ZCS-G(1.5) material can be served as a photocatalyst with a promising application prospect for splitting of water under visible light.
引文
[1] Peng Chen,Yun Su,Hong Liu,et al.Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications[J].ACS Appl.Mater.Interfaces,2013,22(5):12 073-12 082.
    [2] Jinhui Yang,Donge Wang,Hongxian Han,et al.Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J].Accounts of Chemical.Research,2013,46(8):1 900-1 909.
    [3] Wee Jun Ong,Lling Lling Tan,Yun Hau Ng,et al.Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:Are we a step closer to achieving sustainability[J].Chemical Reviews,2016,116(12):7 159-7 329.
    [4] Lutfi K.Putri,Boon Junn Ng,Wee Jun Ong,et al.Heteroatom nitrogen-and boron-doping as a facile strategy to improve photocatalytic activity of standalone reduced graphene oxide in hydrogen evolution[J].ACS Applied Materials & Interfaces,2017,9(5):4 558-4 569.
    [5] Kazuhiko Maeda.Z-scheme water splitting using two different semiconductor photocatalysts[J].ACS Catalysis,2013,3(7):1 486-1 503.
    [6] Boon Junn Nga,Lutfi Kurnianditia Putria,Xin Ying Kong,et al.Sub-2nm Pt-decorated Zn0.5Cd0.5S nanocrystals with twin-induced homojunctions for efficient visible-light-driven photocatalytic H2 evolution[J].Applied Catalysis B:Environmental,2018,224:360-367.
    [7] Qian Wang,Takashi Hisatomi,Yohichi Suzuki,et al.Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure[J].Journal of the American Chemical Society,2017,139(4):1 675-1 683.
    [8] Yan Yan,Xinlin Liu,Weiqiang Fan,et al.InVO4 microspheres:preparation,characterization and visible-light-driven photocatalytic activities[J].Chemical Engineering Journal,2012,200-202:310-316.
    [9] Yanhui Zhang,Zirong Tang,Xianzhi Fu,et al.TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:Is TiO2-graphene truly different from other TiO2-carbon composite materials[J].ACS Nano,2010,12(4):7 303-7 314.
    [10] Xiaojing Liu,Peng Zeng,Tianyou Peng,et al.Preparation of multiwalled carbon nanotubes/Cd0.8Zn0.2S nanocomposite and its photocatalytic hydrogen production under visible-light[J].International Journal of Hydrogen Energy,2012,37(2):1 375-1 384.
    [11] Yongkui Cui,Fengping Wang,M.Zubair Iqbal,et al.Synthesis of novel 3D SnO flower-like hierarchical architectures self-assembled by nano-leaves and its photocatalysis[J].Materials Research Bulletin,2015,70:784-788.
    [12] Xuelian Yu,Ruifeng Du,Baoying Li,et al.Biomolecule-assisted self-assembly of CdS/MoS2/Graphene hollow spheres as high-efficiency photocatalysts for hydrogen evolution without noble metals[J].Applied Catalysis B:Environmental,2016,182:504-512.
    [13] Run Shi,Yinhu Cao,Yanjun Bao,et al.Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution[J].Advanced Materials,2017,29(27):1 700 803.
    [14] Ying Jin,Haoyun Zhang,Chuang Song,et al.Hollow ZnxCd1-xS nanospheres with enhanced photocatalytic activity under visible light[J].Scientific Reports,2016,6:29 997.
    [15] Zhonghui Han,Gang Chen,Chunmei Li,et al.Preparation of 1D cubic Cd0.8Zn0.2S solid-solution nanowires using levelling effect of TGA and improved photocatalytic H2-production activity[J].Journal of Materials Chemistry A,2015,3:1 696-1 702.
    [16] Hong Liu,Zhitong Jin,Zhengzheng Xu.Hybridization of Cd0.2Zn0.8S with g-C3N4 nanosheets:A visible-light-drivenphotocatalyst for H2 evolution from water and degradation of organic pollutants[J].Dalton Transactions,2015,44(32):14 368-14 375.
    [17] Quanjun Xiang,Jiaguo Yu,Mietek Jaroniec.Graphene-based semiconductor photocatalysts[J].Chemical Society Reviews,2012,41(2):782-796.
    [18] Nan Zhang,Yanhui Zhang,Xiaoyang Pan,et al.Constructing ternary CdS-Graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation[J].The Journal of Physical Chemistry C,2012,116(34):18 023-18 031.
    [19] Jun Zhang,Jiaguo Yu,Mietek Jaroniec,et al.Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance[J].Nano Letters,2012,12(9):4 584-4 589.
    [20] Yan Xu,Yinyan Gong,Hui Ren,et al.Insight into enhanced photocatalytic H2 production by Ni(OH)2-decorated ZnxCd1-xS nanocomposite photocatalysts[J].Journal of Alloys and Compounds,2018,735:2 551-2 557.
    [21] Qin Li ,Huan Meng ,Peng Zhou ,et al.Zn1-xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity[J].ACS Catalysis,2013,3(5):882-889.
    [22] Serpone N ,Lawless D ,Khairutdinov R.Size effects on the photophysical properties of colloidal anatase TiO2 particles:Size quantization versus direct transitions in this indirect semiconductor[J].The Journal of Physical Chemistry,1995,99(45):16 646-16 654.
    [23] Hui Fang Ye,Rui Shia,Xiao Yang,et al.P-doped ZnxCd1-xS solid solutions as photocatalysts for hydrogen evolutionfrom water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural[J].Applied Catalysis B:Environmental,2018,233:70-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700