用户名: 密码: 验证码:
中国高原气候区下光伏组件实际运行衰减分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:DEGRADATION ANALYSIS OF PHOTOVOLTAIC MODULES UNDER FIELD OPERATION PLATEAU CLIMATE REGION OF CHINA
  • 作者:李海玲 ; 陈旭 ; 吕芳 ; 胡红杰 ; 姜飞飞 ; 刘海涛
  • 英文作者:Li Hailing;Chen Xu;Lyu Fang;Hu Hongjie;Jiang Feifei;Liu Haitao;Key laboratory of Solar Thermal Enrgy and Photovoltaic System,Chinese Academy of Sciences;Institute of Electrical Engineering,Chinese Academy of Sciences;University of Chinese Academy of Sciences;DuPont(China)Research&Development and Management Co.,Ltd.;
  • 关键词:光伏 ; 组件 ; 衰减 ; 晶体硅 ; 户外运行
  • 英文关键词:photovoltaic;;module;;degradation;;crystalline silicon;;in-field aging
  • 中文刊名:TYLX
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:中科院太阳能热利用及光伏系统重点实验室;中国科学院电工研究所;中国科学院大学;杜邦(中国)研发管理有限公司;
  • 出版日期:2019-06-28
  • 出版单位:太阳能学报
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划“可再生能源与氢能技术”专项“典型气候条件下光伏系统实证研究和测试关键技术”项目(2018YFB1500900)
  • 语种:中文;
  • 页:TYLX201906011
  • 页数:7
  • CN:06
  • ISSN:11-2082/TK
  • 分类号:86-92
摘要
研究在西藏地区分别运行15 a和9 a的2个光伏电站组件的衰减情况,采用外观检查法、EL、I-V、SEM等手段进行组件衰减模式与衰减机制研究。结果表明,2个电站组件年均衰减率分别为0.82%和0.71%,在晶体硅组件合理衰减范围内。研究发现年均衰减率为0.82%的组件主要问题为电极腐蚀及电极处EVA黄变,并发现出现大量高温差作用下的特征栅线断裂;年均衰减率为0.71%的组件主要问题为聚酯(PET)背板严重粉化、减薄等问题,同时发现大量背板减薄导致支撑力减弱而引起的电极断栅电池隐裂,聚酯(PET)背板材料在当地高紫外作用下表现出较差的耐候性。以上研究结果一定程度上反映出高原气候区下高温差及高紫外对组件性能的影响。
        In this paper,two photovoltaic(PV) power stations operating 15 and 9 years,repectively, in Tibet wereinvestigated to study module degradation in plateau climate region. By visual inspection,EL,I-V and scanning electron microscope(SEM)methods,the degradation model and mechanism were analyzed. The results showed that the average annual power degradation rates of the two kinds modules were 0.82% and 0.71% respectively,which is within the reasonable degradation range of crystalline silicon modules. The most problems of the modules with average annual power degradation rate of 0.82% is found grid corrosion,EVA yellowing,and Ag grid breakages which are located at finger-solder interface caused by wide range of temperature. The modules with average annual power degradation rate of 0.71% were found serious backsheet(polyester based)chalking,thickness decreasing,cell crack and grid breakages.Crack and grid breakages may be caused by backsheet thickness decreasing because of high UV. which shows that PET backsheet materials has poor reliability under local high UV radiation. The research results flect in certain extent which shows that the influence of wide temperature range and high UV radiation on the degradation of modules in plateau climate zone.
引文
[1]Dhoke A, Mengede A. Degradation analysis of PV modules operating in Australian environment[A].Australasian Universities Power Engineering Conference[C],Brisbane,Queensland,Australia,2017,1—5.
    [2]郑海兴,舒碧芬,沈辉,等.晶体硅组件长期运行后性能及衰退原因分析[J].太阳能学报,2012,33(4):614—617.[2]Zheng Haixing,Shu Bifen,Shen Hui,et al. Analysis of properties and reasons for deterioration of crystalline silicon components after long-term operation[J]. Acta Energiae Solaris Sinica,2012,33(4):614—617.
    [3]Jiang Feifei, Liu Haitao, Zou Xinjing. Test and analysis of potential induced degradation in crystalline silicon PV modules[A]. Chinese Control And Decision Conference[C], Shenyang, China, 2018, 4993—4996
    [4]Rajput P,Tiwari G N,Bora B,et al. Visual and electrical degradation of 22 years field age monocrystalline silicon PV module in composite climate of India[A]. IEEE 42nd Photovoltaic Specialist Conference[C],New Orleans,LA,USA,2015,1—3.
    [5]Raupp C,Libby C,Tatapudi S,et al. Degradation rate evaluation of multiple PV technologies from 59000modules representing 252000 modules in four climatic regions of the United States[A]. IEEE 43rd Photovoltaic Specialists Conference[C],Portland or USA,2016,0255—0260.
    [6]Shrestha S and TamizhMani G. Selection of best methods to calculate degradation rates of PV modules[A]. IEEE42nd Photovoltaic Specialist Conference[C], New Orleans,LA,USA,2015,1—4.
    [7]Subramaniyan A B, Pan R, Kuitche J, et al.Quantification of environmental effects on PV module degradation:A physics-based data-driven modeling method[J]. IEEE Journal of Photovoltaics, 2018,8(5):1—8.
    [8]Tung C M,Li Y T,Yang W L,et al. Investigation of degradation of single-cell PV module by pressure cooker test and damp heat test[A]. IEEE 43rd Photovoltaic Specialists Conference[C],Portland or USA,2016,0935—0937.
    [9]王喜炜,白建波,宋昊,等.光伏组件加速老化试验可靠性及其寿命分布研究[J].可再生能源,2017,35(5):675—680.[9]Wang Xiwei,Bai Jianbo,Song Hao,et al. Reliability and life distribution of accelerated aging test of photovoltaic modules[J]. Renewable Energy Resources,2017,35(5):675—680.
    [10]Vignola F, Peterson J, Kessler R, et al. Use of pyranometers to estimate PV module degradation rates in the field[A]. IEEE 43rd Photovoltaic Specialists Conference[C],Portland or USA,2016,1016—1021.
    [11]Jordan D C,Kurtz S R,Vansant K,et al. Compendium of photovoltaic degradation rates[J]. Progress in Photovoltaics Research&Applications,2016,24(7):978—989.
    [12]Bouraiou A,Hamouda M,Chaker A,et al. Analysis and evaluation of the impact of climatic conditions on the photovoltaic modules performance in the desert environment[J]. Energy Conversion&Management,2015,106:1345—1355.
    [13]Kuitche J M,Pan R,Tamizhmani G. Investigation of dominant failure mode(s)for field-aged crystalline silicon PV modules under desert climatic conditions[J]. IEEE Journal of Photovoltaics,2014,4(3):814—826.
    [14]Yedidi K,Tatapudi S,Mallineni J,et al. Failure and degradation modes and rates of PV modules in a hot-dry climate:Results after 16 years of field exposure[A].IEEE 40th Photovoltaic Specialist Conference[C].Denver,Colorado,USA,2014,3245—3247.
    [15]Nabil Kahoul,Rachid Chenni,Hocine Cheghib,et al.Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment[J].Renewable Energy,2017,109:66—72.
    [16]Rajiv D,Shashwata C,Vivek K,et al. Performance degradation in field-aged crystalline silicon PV modules in different indian climatic conditions[A]. IEEE 40th Photovoltaic Specialist Conference[C], Denver,Colorado,USA,2014,3182—3187.
    [17]Sanjay M S, Jaya K M, Karan R Y, et al.Determination of dominant failure modes using fmeca on the field deployed c-Si modules under hot-dry desert Climate[J]. IEEE Journal of Photovoltaics, 2015,5(1):174—182.
    [18]Teo T W,Abdullah M Z,Teo T W,et al. Detection of oxygen precipitate dark rings in solar cell luminescence using gray level co-occurrence matrix[A]. 9th International Conference on Robotic,Vision,Signal Processing and Power Applications[C], Springer Singapore,2017,307—312.
    [19]Tanahashi T,Sakamoto N,Shibata H,et al. Electrical detection of gap formation underneath finger electrodes on c-Si PV cells exposed to acetic acid vapor under hygrothermal conditions[A]. IEEE 43rd Photovoltaic Specialists Conference[C],Portland or USA,2016,1075—1079.
    [20]Sagarika K,Rajesh G. Investigation and analysis of thermo-mechanical degradation of fingers in a photovoltaic module under thermal cyclic stress conditions[J]. Solar Energy,2018,174:1044—1052.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700