用户名: 密码: 验证码:
水沙混合物裂隙渗流特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of water and sand seepage characteristics in fracture
  • 作者:刘玉 ; 韩雨 ; 张强 ; 李猛 ; 王志飞
  • 英文作者:LIU Yu;HAN Yu;ZHANG Qiang;LI Meng;WANG Zhifei;School of Mechatronic Engineering,Jiangsu Normal University;State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology;State Key Laboratory for Geomechanics & Deep Underground Engineering,China University of Mining and Technology;
  • 关键词:裂隙 ; 水沙混合物 ; 煤层突水 ; 滞后性 ; 渗流场 ; 保水采煤
  • 英文关键词:fracture;;water and sand mixture;;water inrush from coal seam;;hysteresis;;seepage field;;water-preserved coal mining
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:江苏师范大学机电工程学院;中国矿业大学煤炭资源与安全开采重点实验室;中国矿业大学深部岩土力学与地下工程国家重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.294
  • 基金:国家自然基金资助项目(51504238);; 博士后创新人才支持计划资助项目(BX201800361);; 中国矿业大学煤炭资源与安全开采国家重点实验室开放研究基金资助项目(SKLCRSM18KF009)
  • 语种:中文;
  • 页:MTXB201903025
  • 页数:7
  • CN:03
  • ISSN:11-2190/TD
  • 分类号:215-221
摘要
水沙在裂隙或破碎岩石中的渗透特性具有复杂性,研究水沙裂隙渗流特性对于揭示突水溃沙机理具有重要意义。利用自制的水沙裂隙渗流试验仪器,通过改变沙粒径、浓度等因素进行水沙渗透试验,获得水沙在裂隙中流动的滞后性特征。通过水沙裂隙渗流试验,得到了岩石裂隙中水沙渗流速度-压力梯度滞环曲线,分析了滞环曲线的特征,简单解释了滞后现象的原因。得到其渗透压力梯度与渗流速度在一个循环周期内形成了一条封闭滞后曲线,根据曲线的是否有交叉和往返曲线的距离分为4种变化类型;随沙粒径和沙浓度增大,曲线由Ⅰ型向Ⅳ型转化。滞后性指标用最大滞后量G_p和滞环面积S描述,随沙粒径和浓度增大,这两者均呈增大趋势,但增幅并不同步。进一步,利用ANSYS Fluent软件进行水沙裂隙渗流场的数值模拟,获得了在不同因素影响下渗流场的变化规律。数值模拟结果表明,粗糙裂隙流场物理量随时间波动;粗糙裂隙中水沙流动受壁面约束作用,表现出流场物理量空间分布的随机性。模拟结果显示裂隙中水沙渗流场不稳定,渗流场的压力损失与沙粒径呈反向变化。裂隙横截面上水沙流体时均速度和湍动能分布受沙粒径和沙体积浓度影响很大,表现为极值点的位置偏移。此研究可以为进一步研究浅埋煤层突水提供参考。
        The permeability characteristics of water-sand in cracks or broken rocks are complex.The study on the seepage characteristics of water-sand cracks is of great significance to reveal the mechanism of water inrush and sand rupture.Using a self-made instrument for water-sand fissure seepage test,the water-sand seepage test was carried out by changing sand particle size,concentration and other factors,and the hysteresis characteristics of water-sand flow in the fissure were obtained.Also,the hysteresis curve of velocity-pressure gradient of water and sand seepage in fractured rock was obtained from the test.A closed hysteresis curve of the seepage pressure gradient and the seepage velocity is formed in one cycle.With the increase of sand particle size and concentration,the curve changes from type Ⅰ to type Ⅳ.The hysteresis parameters are described by the maximum hysteresis G_p and the hysteresis area S,both of which show an increasing trend with the increase of sand particle size and concentration,but the increase is not synchronous.Furthermore,the numerical simulation of water-sand fracture seepage field was carried out by using ANSYS Fluent software,and the variation rules of seepage field under the influence of different factors were obtained.Numerical simulation results show that the physical quantity of rough fracture flow field fluctuates with time.The flow of water and sand in rough cracks is restricted by the wall surface,which shows the randomness of the physical distribution of flow field.The simulation results show that the seepage field of water and sand is unstable,and the pressure loss of seepage field is inversely related to the particle size of sand.The average velocity and turbulent kinetic energy distribution of water-sand fluid on the fracture cross-section are greatly affected by the particle size and the concentration of the volume of sand.This study can provide a reference for further study of water inrush from shallow coal seam.
引文
[1]范立民.保水采煤的科学内涵[J].煤炭学报,2017,42(1):27-35.FAN Limin.Scientific connotation of water-preserved mining[J].Journal of China Coal Society,2017,42(1):27-35.
    [2]FAN Limin,MA Xiongde.A review on investigation of water-preserved coal mining in western China[J].International Journal of Coal Science&Technology,2018,5(4):411-416.
    [3]马立强,张东升,王烁康,等.“采充并行”式保水采煤方法[J].煤炭学报,2018,43(1):62-69.MA Liqiang,ZHANG Dongsheng,WANG Shuokang,et al.Waterpreserved mining with the method named“backfilling while mining”[J]Journal of China Coal Society,2018,43(1):62-69.
    [4]李东,刘生优,张光德,等.鄂尔多斯盆地北部典型顶板水害特征及其防治技术[J].煤炭学报,2017,42(2):3249-3245.LI Dong,LIU Shengyou,ZHANG Guangde,et al.Typical roof water disasters and its prevention&control technology in the north of OrdosBasin[J].Journal of China Coal Society,2017,42(2):3249-3254.
    [5]浦海,倪宏阳,肖成.基于格子Boltzmann理论的弱胶结裂隙岩体水沙两相流特性[J].煤炭学报,2017,42(1):162-168.PU Hai,NI Hongyang,XIAO Cheng.Characteristics of water sediment two phase flows in weakly cemented fractured rock mass based on Lattice Boltzmann method[J].Journal of China Coal Society,2017,42(1):162-168.
    [6]杜锋,李振华,姜广辉,等.西部矿区突水溃沙类型及机理研究[J].煤炭学报,2017,42(7):1846-1853.DU Feng,LI Zhenhua,JIANG Guanghui,et al.Types and mechanism of water-sand inrush disaster in west coal mine[J].Journal of China Coal Society,2017,42(7):1846-1853.
    [7]隋旺华,蔡光桃,董青红.近松散层采煤覆岩采动裂缝水砂突涌临界水力坡度试验[J].岩石力学与工程学报,2007,26(10):2084-2091.SUI Wanghua,CAI Guangtao,DONG Qinghong.Experimental research on critical percolation gradient of quicksand across overburden fissures due to coal mining near unconsolidated soil layers[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(10):2084-2091.
    [8]梁艳坤,隋旺华,朱涛,等.哈拉沟煤矿垮落带破碎岩体溃砂的离散元数值模拟研究[J].煤炭学报,2017,42(2):470-476.LIANG Yankun,SUI Wanghua,ZHU Tao,et al.Numerical simulation of quicksand through the broken rocks in caving zone due to coal mining based on DEM[J].Journal of China Coal Society,2017,42(2):470-476.
    [9]范立民,马雄德,蒋辉,等.西部生态脆弱矿区矿井突水溃沙危险性分区[J].煤炭学报,2016,41(3):531-536.FAN Limin,MA Xiongde,JIANG Hui,et al.Risk evaluation on water and sand inrush in ecologically fragile coal mine[J].Journal of China Coal Society,2016,41(3):531-536.
    [10]杨鑫,徐曾和,杨天鸿,等.西部典型矿区风积沙含水层突水溃沙的起动条件与运移特征[J].岩土力学,2018,39(1):21-35.YANG Xin,XU Zenghe,YANG Tianhong,et al.Incipience condition and migration characteristics of aeolian-sand aquifer in a typical western mine[J].Rock and Soil Mechanics,2018,39(1):21-35.
    [11]许延春,杜明泽,李江华,等.水压作用下防砂安全煤岩柱失稳机理及留设方法[J].煤炭学报,2017,42(2):328-334.XU Yanchun,DU Mingze,LI Jianghua,et al.Instability mechanism and design method of coal and rock pillar under water pressure[J].Journal of China Coal Society,2017,42(2):328-334.
    [12]SUN Qiang,ZHANG Jixiong,ZHOU Nan,et al.Roadway backfill coal mining to preserve surface water in western China[J].Mine Water and the Envieonment,2018,37(2):366-375.
    [13]ZHANG Kai,ZHANG Boyang,LIU Jiangfeng,et al.Experiment on seepage property and sand inrush criterion for granular rock mass[J].Geofluids,2017,2017(12):1-10.
    [14]LIU Yu,LI Shuncai.Influence of particle size on non-Darcy seepage of water and sediment in fractured rock[J].Springplus,2016,5(1):2099.
    [15]ZHANG Guimin,ZHANG Kai,WANG Lijuan,et al.Mechanism of water inrush and quicksand movement induced by a borehole and measures for prevention and remediation[J].Bulletin of Engineering Geology and the Environment,2015,74(4):1395-1405.
    [16]ZHANG Juanxia,ZHANG Xuezhi,GUO Xianzhang,et al.Water in rush analysis and manage measures of shaft sinking by freezing method[J].Disaster Advances,2012,5(4):452-456.
    [17]ZHANG Jincai,PENG Suping.Water inrush and environmental impact of shallow seam mining[J].Environmental Geology,2005,48(8):1068-1076.
    [18]FAN Gangwei,ZHANG Dongsheng,ZHANG Shizhong,et al.Assessment and prevention of water and sand inrush associated with coal mining under a water-filled buried gully:A case study[J].Mine Water and the Enviroment,2018,37(3):565-576.
    [19]ZHANG Gailing.An experimental investigation on the permeability of chemically grouted sands and its application for mitigating underground sand and water inrushes[J].International Journal of Environment&Pollution,2016,59(2/3/4):187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700