用户名: 密码: 验证码:
EMIES/nC_9H_(10)O_2基低共熔溶剂的制备及其氧化脱硫活性的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of EMIES/nC_9H_(10)O_2-based deep eutectic solvents and its oxidative desulfurization activity
  • 作者:王鑫博 ; 张延平 ; 李秀萍 ; 赵荣祥
  • 英文作者:WANG Xinbo;ZHANG Yanping;LI Xiuping;ZHAO Rongxiang;College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University;
  • 关键词:溶剂萃取 ; 回收 ; 催化剂 ; 低共熔溶剂
  • 英文关键词:solvent extraction;;recovery;;catalysis;;deep eutectic solvents
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:辽宁石油化工大学化学化工与环境学部;
  • 出版日期:2019-01-21 09:34
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:辽宁省博士启动基金项目(201501105)
  • 语种:中文;
  • 页:HGSZ201904037
  • 页数:8
  • CN:04
  • ISSN:11-1946/TQ
  • 分类号:332-339
摘要
通过简单加热1-乙基-3-甲基咪唑硫酸乙酯(EMIES)离子液体和3-苯丙酸(C_9H_(10)O_2)的混合物,制备了一系列酸性低共熔溶剂EMIES/nC_9H_(10)O_2(n=0.25,0.5,1,2,4)。通过FTIR,~1H NMR和TGA的表征,确定EMIES/nC_9H_(10)O_2的结构。以该低共熔溶剂为催化剂和萃取剂,H_2O_2为氧化剂,组成氧化-萃取脱硫体系,用于脱除模拟油中的硫化物。考察了原料配比、反应温度、氧硫比(O/S)、低共熔溶剂加入量和不同硫化物对脱硫性能的影响。结果表明,在EMIES和C_9H_(10)O_2摩尔比为1∶1,反应温度为50℃,O/S比为8,低共熔溶剂加入量为1.5 g和模拟油5 ml的反应条件下,二苯并噻吩、4,6-二甲基二苯并噻吩和苯并噻吩的脱除率分别为94.8%、91.6%和46.4%。低共熔溶剂可循环使用6次,活性无明显下降。此外,对该氧化-萃取脱硫体系的脱硫机理进行了探讨。
        A series of acidic deep eutectic solvents(DESs) EMIES/nC_9H_(10)O_2(n=0.25, 0.5, 1, 2, 4) were synthesized by simply heating the mixture of 1-ethyl-3-methylimidazolium ethylsulfate(EMIES) and 3-phenylpropionic acid(C_9H_(10)O_2). The structure of EMIES/nC_9H_(10)O_2 was determined by FTIR,1 H NMR and TGA characterization. The extraction-oxidation desulfurization system was developed to remove sulfides from model oil using EMIES/nC_9H_(10)O_2 as the extractant and catalyst, H_2O_2 as the oxidation. The influences of raw material ratio, reaction temperature, O/S ratio, amount of DESs and different sulfide on the desulfurization performance were investigated. The experimental results demonstrated the optimal reaction conditions were molar ratio of EMIES to C_9H_(10)O_2 of 1∶1, temperature of50℃, O/S ratio of 8, the amount of DESs of 1.5 g and 5 ml model oil. Removal rate of DBT, 4, 6-DMDBT and BT reached 94.8%, 91.6% and 46.4%, respectively, under the optimal condition. The DESs can be reused for 6 times without significant decrease in activity. In addition, the desulfurization mechanism of the oxidation-extraction desulfurization system was discussed.
引文
[1] LüH, Li P, Deng C, et al. Deep catalytic oxidative desulfurization(ODS)of dibenzothiophene(DBT)with oxalate-based deep eutectic solvents(DESs)[J]. Chemical Communications, 2015, 51(53):10703-10706.
    [2] Stanislaus A, Marafi A, Rana M S. Recent advances in the science and technology of ultra low sulfur diesel(ULSD)production[J].Catalysis Today, 2010, 153(1/2):1-68.
    [3] Soleimani M, Bassi A, Margaritis A. Biodesulfurization of refractory organic sulfur compounds in fossil fuels[J].Biotechnology Advances, 2007, 25(6):570-596.
    [4] Ma X, Zhou A, Song C. A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption[J]. Catalysis Today, 2007, 123(1/2/3/4):276-284.
    [5] Ko N H, Lee J S, Huh E S, et al. Extractive desulfurization using Fe-containing ionic liquids[J]. Energy&Fuels, 2008, 22(3):1687-1690.
    [6] Park J G, Ko C H, Yi K B, et al. Reactive adsorption of sulfur compounds in diesel on nickel supported on mesoporous silica[J].Applied Catalysis B:Environmental, 2008, 81(3/4):244-250.
    [7] Zhang S, Zhang Q, Zhang Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids[J]. Industrial&Engineering Chemistry Research, 2004, 43(2):614-622.
    [8] Wu Z, Xue Y, Zhang Y, et al. SnS2nanosheet-based microstructures with high adsorption capabilities and visible light photocatalytic activities[J]. RSC Advances, 2015, 5(31):24640-24648.
    [9] Abbott A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications,2003,(1):70-71.
    [10] Li C, Li D, Zou S, et al. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J]. Green Chemistry, 2013, 15(10):2793-2799.
    [11] Li J, Xiao H, Tang X, et al. Green carboxylic acid-based deep eutectic solvents as solvents for extractive desulfurization[J].Energy&Fuels, 2016, 30(7):5411-5418.
    [12] Gano Z S, Mjalli F S, Al-Wahaibi T, et al. Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents:experimental design and optimization by centralcomposite design[J]. Chemical Engineering and Processing:Process Intensification, 2015, 93:10-20.
    [13] Li C, Zhang J, Li Z, et al. Extraction desulfurization of fuels with‘metal ions.based deep eutectic solvents(MDESs)[J]. GreenChemistry, 2016, 18(13):3789-3795.
    [14] Ekezie F G C, Sun D W, Cheng J H. Acceleration of microwave-assisted extraction processes of food components by integratingtechnologies and applying emerging solvents:a review of latestdevelopments[J]. Trends in Food Science&Technology, 2017,67:160-172.
    [15] Dai D, Wang L, Chen Q, et al. Selective oxidation of sulfides tosulfoxides catalysed by deep eutectic solvent with H2O2[J].Journal of Chemical Research, 2014, 38(3):183-185.
    [16] Yin J, Wang J, Li Z, et al. Deep desulfurization of fuels based onan oxidation-extraction process with acidic deep eutectic solvents[J].Green Chemistry, 2015, 17(9):4552-4559.
    [17] Kudtak B, Owczarek K, Namie?nik J. Selected issues related tothe toxicity of ionic liquids and deep eutectic solvents—a review[J]. Environmental Science and Pollution Research, 2015, 22(16):11975-11992.
    [18] Leclercq L, Suisse I, Nowogrocki G, et al. Halide-free highly-pure imidazolium triflate ionic liquids:preparation and use inpalladium-catalysed allylic alkylation[J]. Green Chemistry, 2007,9(10):1097-1103.
    [19] Jiang X, Nie Y, Li C, et al. Imidazolium-based alkylphosphateionic liquids—a potential solvent for extractive desulfurization offuel[J]. Fuel, 2008, 87(1):79-84.
    [20]邢鹏飞,赵荣祥,李秀萍,等. Bi2WO6的制备及其在离子液体中的超深度氧化脱硫[J].中国炼油与石油化工, 2017, 19(1):99-105.Xing P F, Zhao R X, Li X P, et al. Preparation of Bi2WO6and itsultra-deep oxidative desulfurization performance in ionic liquids[J]. China Petroleum Processing and Petrochemical Technology,2017, 19(1):99-105.
    [21] Wheeler J L, Pugh M K, Atkins S J, et al. Thermal breakdownkinetics of 1-ethyl-3-methylimidazolium ethylsulfate measuredusing quantitative infrared spectroscopy[J]. AppliedSpectroscopy, 2017, 71(12):2626-2631.
    [22] Dubey S, Bharmoria P, Gehlot P S, et al. 1-Ethyl-3-methylimidazolium diethylphosphate based extraction ofbioplastic “polyhydroxyalkanoates” from bacteria:green andsustainable approach[J]. ACS Sustainable Chemistry&Engineering, 2017, 6(1):766-773.
    [23] Stack R J, Cotta M A. Effect of 3-phenylpropanoic acid on growthof and cellulose utilization by cellulolytic ruminal bacteria[J].Applied and Environmental Microbiology, 1986, 52(1):209-210.
    [24] Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. Journal of theChemical Society, Chemical Communications, 1992,(13):965-967
    [25] Yuan B, Li Y, Yu F, et al. Benzylation with benzyl alcoholcatalyzed by[ChCl][TfOH]2, a Br?nsted acidic DES with reactioncontrol self-separation performance[J]. Catalysis Letters, 2018,148(7):2133-2138.
    [26] Jiang Y, Zhu W, Li H, et al. Oxidative desulfurization of fuelscatalyzed by Fenton-like ionic liquids at room temperature[J].ChemSusChem, 2011, 4(3):399-403.
    [27] Mokhtar W N A W, Bakar W A W A, Ali R, et al. Deepdesulfurization of model diesel by extraction with N, N-dimethylformamide:optimization by Box–Behnken design[J].Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4):1542-1548.
    [28] Li F, Liu R, Wen J, et al. Desulfurization of dibenzothiophene bychemical oxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2ionic liquid[J]. Green Chemistry, 2009, 11(6):883-888.
    [29] Qiu L, Cheng Y, Yang C, et al. Oxidative desulfurization ofdibenzothiophene using a catalyst of molybdenum supported onmodified medicinal stone[J]. RSC Advances, 2016, 6(21):17036-17045.
    [30] Ede S R, Kundu S. Microwave synthesis of SnWO4nanoassemblies on DNA scaffold:a novel material for highperformance supercapacitor and as catalyst for butanol oxidation[J]. ACS Sustainable Chemistry&Engineering, 2015, 3(9):2321-2336.
    [31] Dong Y, Nie Y, Zhou Q. Highly efficient oxidative desulfurizationof fuels by Lewis acidic ionic liquids based on iron chloride[J].Chemical Engineering&Technology, 2013, 36(3):435-442.
    [32] Chen J, Chen C, Zhang R, et al. Deep oxidative desulfurizationcatalyzed by an ionic liquid-type peroxotungsten catalyst[J]. RSCAdvances, 2015, 5(33):25904-25910.
    [33] Chen X, Song D, Asumana C, et al. Deep oxidative desulfurization of diesel fuels by Lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride[J]. Journal of MolecularCatalysis A:Chemical, 2012, 359:8-13.
    [34] Zhu W S, Li H, Gu Q Q, et al. Kinetics and mechanism foroxidative desulfurization of fuels catalyzed by peroxo-molybdenum amino acid complexes in water-immiscible ionicliquids[J]. Journal of Molecular Catalysis A:Chemical, 2011, 336(1/2):16-22.
    [35] Komintarachat C, Trakarnpruk W. Oxidative desulfurization usingpolyoxometalates[J]. Industrial&Engineering ChemistryResearch, 2006, 45(6):1853-1856.
    [36] Wei L, Zhou Z Y, Chen S P, et al. Electrochemically shape-controlled synthesis in deep eutectic solvents:triambicicosahedral platinum nanocrystals with high-index facets andtheir enhanced catalytic activity[J]. Chemical Communications,2013, 49(95):11152-11154.
    [37] Gao H, Guo C, Xing J, et al. Deep desulfurization of diesel oil withextraction using pyridinium-based ionic liquids[J]. SeparationScience and Technology, 2012, 47(2):325-330.
    [38] Mao C, Zhao R, Li X. Phenylpropanoic acid-based DESs asefficient extractants and catalysts for the removal of sulfurcompounds from oil[J]. Fuel, 2017, 189:400-407.
    [39] Zaid H F M, Chong F K, Mutalib M I A. Extractive deepdesulfurization of diesel using choline chloride-glycerol eutectic-based ionic liquid as a green solvent[J]. Fuel, 2017, 192:10-17.
    [40] Maggi R, Piscopo C G, Sartori G, et al. Supported sulfonic acids:metal-free catalysts for the oxidation of hydroquinones tobenzoquinones with hydrogen peroxide[J]. Applied Catalysis A:General, 2012, 411:146-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700