用户名: 密码: 验证码:
风力发电系统的全生命周期分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Full Life Cycle Assessment on Wind Power Generation System
  • 作者:李龙君 ; 马晓茜 ; 谢明超 ; 廖艳芬
  • 英文作者:Li Longjun;Ma Xiaoqian;Xie Mingchao;Liao Yanfen;WTO/TBT Notification,Consultation & Rearch Center of Guangdong Province;Electric Power College, South China University of Technology;
  • 关键词:风力发电 ; 生命周期 ; 节能减排
  • 英文关键词:wind power generation;;life cycle;;energy conservation and emissions reduction
  • 中文刊名:FENG
  • 英文刊名:Compressor,Blower & Fan Technology
  • 机构:广东省WTO/TBT通报咨询研究中心;华南理工大学电力学院;
  • 出版日期:2015-04-26
  • 出版单位:风机技术
  • 年:2015
  • 期:v.57;No.247
  • 基金:华南理工大学能源高效清洁利用广东普通高校重点实验室项目(KLB10004)
  • 语种:中文;
  • 页:FENG201502015
  • 页数:7
  • CN:02
  • ISSN:21-1167/TH
  • 分类号:71-76+90
摘要
运用生命周期分析方法,对风力发电系统的六个阶段进行分析,得到了标煤的消耗量为11.13g/k W·h,CO2排量为46.6g/k W·h,分别为煤电的0.25%和0.21%。加权平均后得资源耗竭系数为3.61E-04 m PR90,其中油占68.42%,煤占31.58%;总环境影响负荷为4.03E-05人当量,GWP和AP分别为煤电的1.81%和3.9%。对系统进行敏感性分析得知,风机运输距离的影响作用小于发电量的影响作用,且完善技术、健全管理制度能够显著提高风电系统的节能和环保效应。
        The life cycle assessment method was used for the analysis of six stages of the wind power generation system.It was found that the consumption of standard coal was 11.13g/k W·h. The emission amount of CO2 was 46.6g/k W·h, they accounted for 0.25% and 0.21% of coal power respectively. After dealing the data with weighted average, we could acknowledge that the coefficient of resource depletion was 3.61E-04 m PR90, and the oil was 68.42% and the coal was 31.58% of it.The total environmental impact load was4.03E-05 PET, and its GWP and AP was1.81% and 3.9% of coal power respectively.Based on the sensitivity analysis of the system, we could know that the impact of transport distance of aerogenerator was less than that of generated energy. The study also found that we could greatly enhance the energy conservation and environmental protection effect through perfecting the technology and management system of wind power generation.
引文
[1]China,N.B.o.S.o.,2011.China Statistical Yearbook 2010[M].China Statistics Press,Beijing.
    [2]Z.Du,Y.Li,X.Wang,etc.Microwave-assisted pyrolysis of microalgae for biofuel production[J].Bioresource technology,2011,102(7):4890-4896.
    [3]Rajesh Karki.Renewable energy credit driven wind power growth for system reliability[J].Electric Power System Research,2007,77:797-803.
    [4]钟伟强.国内外风力发电的概况[J].风机技术,2005(5):44-46.
    [5]于建辉,周浩.我国风电开发的现状及展望[J].风机技术,2006(6):46-50.
    [6]陈贞,倪维斗,李政.风电特性的初步研究[J].太阳能学报,2009,32(2):210-215.
    [7]谢元俊.风电场的经济效益分析[J].电力技术,2008(2):25-29.
    [8]胡志锋,马晓茜,梁增英.广州市生活垃圾处理工艺的生命周期评价[J].可再生能源,2012,30(1):106-112.
    [9]杨建新,徐成,王如松.产品生命周期评价方法及应用[M].北京:气象出版社,2002.
    [10]邹志平,马晓茜.风力发电的生命周期分析[J].中国电力,2003,36(9):83-87.
    [11]王维兴.高炉炼铁与非高炉炼铁的能耗比较[J].炼铁,2011,30(1):59-61.
    [12]张芳,吴国荣.我国钢材生产的生命周期评价[J].中国商界,2009(12):173-174.
    [13]阮仁满,衷水平,王淀佐.生物提铜与火法炼铜过程的生命周期评价[J].中国有色冶金,2010(4):30-33.
    [14]姜睿,王洪涛.中国水泥工业的生命周期评价[J].化学工程与装备,2010(4):183-187.
    [15]祝伟光,高成康,蔡九菊.基于生命周期评价分析风力发电的环境负荷[C].2010全国能源与热工学术年会论文集,2010.
    [16]翁兴国.风电烧结钕铁硼产业投资前景可期[J].新材料产业,2008(10):35-38.
    [17]李贵奇.基于生命周期思想的环境评估模型及其在铝工业中的应用[D].湖南:中南大学,2010.
    [18]宋丹娜,柴立元,何德文.基于生命周期分析的电解铝清洁生产评价指标研究[J].环境技术,2005(6):9-13.
    [19]国家统计局.中国交通年鉴2011[M].北京:中国交通年鉴社,2012.
    [20]Brice Tremeac,Francis Meunier.Life cycle analysis of 4.5MW and 250W wind turbines[M].Renewable and Sustainable Energy Reviews,2009.
    [21]蒋金良,马晓茜.基于生命周期评价的不同电源对环境影响的比较[J].电站系统工程,2004,20(3):26-28.
    [22]冯亚娜.LCA对风电产业发展的启示[J].科技资讯,2009(24):49-50.
    [23]王晓天.基于全生命周期评价方法的风电环境效益测算—以内蒙古某风电场为例[J].科技管理研究,2012,32(18):259-262.
    [24]姚家伟.敏感性分析在风电可行性研究中的应用[J].水力发电,2006(1):84-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700