用户名: 密码: 验证码:
博尔塔拉河地表水重金属来源分析及其污染评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Source analysis and pollution assessment of heavy metals in surface water of Bortala River, Northwest China
  • 作者:张伟燕 ; 马龙 ; 吉力力·阿不都外力 ; 葛拥晓 ; 蒲佳 ; 华攸胜
  • 英文作者:ZHANG Weiyan;MA Long;JILILI Abuduwaili;GE Yongxiao;PU Jia;HUA Yousheng;State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences;Chinese Academy of Sciences Research Center for Ecology and Environment of Central Asia;University of Chinese Academy of Sciences;
  • 关键词:博尔塔拉河 ; 地表水重金属 ; 来源分析 ; 污染评价
  • 英文关键词:heavy metals in surface water;;source analysis;;pollution assessment;;Bortala River
  • 中文刊名:GHZH
  • 英文刊名:Journal of Arid Land Resources and Environment
  • 机构:中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室;中国科学院中亚生态与环境研究中心;中国科学院大学;
  • 出版日期:2019-05-06
  • 出版单位:干旱区资源与环境
  • 年:2019
  • 期:v.33;No.251
  • 基金:自治区青年科技创新人才培养项目(QN2016BS0052);; 国家自然科学基金项目(41501115)资助
  • 语种:中文;
  • 页:GHZH201907015
  • 页数:7
  • CN:07
  • ISSN:15-1112/N
  • 分类号:102-108
摘要
2017年9月下旬沿博尔塔拉河采集水样41个,分析了各个样点6种重金属(Cr、Cu、Zn、As、Cd、Pb)的含量变化和空间分布特征,并结合河流周边环境特征分析了各重金属的来源,同时利用国家标准值和重金属污染指数(HPI)对区域重金属污染状况进行了评价,结果表明:(1)博尔塔拉河地表水中6种重金属Cr、Cu、Zn、As、Pb和Cd含量的空间差异性均处于中高等变异水平,其中Zn、Cd和Pb的含量高值点主要位于下游的艾比湖湖区附近,Cu的含量高值点位于博乐市周边及下游区域,Cr和As的含量高值点多集中于中下游区域,结合周边环境特征判断Zn、Cd和Pb是受耕作施肥、交通和工农业活动的共同影响,而Cr和As主要受农业活动的影响。(2)根据《地表水环境质量标准》和《生活饮用水卫生标准》及HPI指数评价表明应加强中下游区域地表水中As和Pb的监控力度,本研究对了解区域河水重金属污染状况及区域水环境安全的保障具有重要的意义。
        In late September 2017, 41 water samples were collected along the Bortala River. The content changes and spatial distribution characteristics of six heavy metals(Cr, Cu, Zn, As, Cd, Pb) were analyzed and combined with the environmental characteristics around river, the sources of heavy metals were analyzed. At the same time, the national standard value and heavy metals pollution index(HPI) were used to evaluate the regional heavy metal pollution. The results showed that:(1) The spatial variability of six heavy metals are all in the middle and high variation level. The high contents of Zn, Cd and Pb are mainly located around the Ebinur Lake. The high value of Cu is located in the Bole City and downstream area, the high values of Cr and As are concentrated in the middle and lower reaches. Combined with the surrounding environmental characteristics, Zn, Cd and Pb are jointly affected by farming, transportation, industrial and industrial activities, while Cr and As are mainly affected by agriculture.(2) According to the "Surface Water Environmental Quality Standards", "Sanitary Standards for Drinking Water" and the HPI Index, it is indicated that the monitoring of As and Pb in surface water in the middle and lower reaches should be strengthened. This study is of great significance for understanding the pollution status of heavy metal in regional rivers and the protection of regional water environment.
引文
[1]Sin S N, Chua H, Lo W, et al. Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong[J]. Environment International, 2001, 26(5-6): 297-301.
    [2]Pekey H, Karakas D, Bakoglu M. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Mar Pollut Bull[J]. Marine Pollution Bulletin, 2004, 49(9): 809-818.
    [3]Armitage P D, Bowes M J, Vincent H M. Long‐term changes in macroinvertebrate communities of a heavy metal polluted stream: the river Nent (Cumbria, UK) after 28 years[J]. River Research & Applications, 2010, 23(9): 997-1015.
    [4]Yuan G L, Liu C, Chen L, et al. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China[J]. Journal of Hazardous Materials, 2011, 185(1): 336-345.
    [5]Su S, Xiao, Mi X, et al. Spatial determinants of hazardous chemicals in surface water of Qiantang River, China[J]. Ecological Indicators, 2013, 24(24): 375-381.
    [6]Zhou J, Feng K, Pei Z, et al. Pollution assessment and spatial variation of soil heavy metals in Lixia River Region of Eastern China[J]. Journal of Soils & Sediments, 2016, 16(3): 1-8.
    [7]Alloway B J, Ayres D. Chemical principles of environmental pollution[J]. Water Air & Soil Pollution, 1998, 102(1-2): 216-218.
    [8]Knight C, Kaiser J, Lalor G C, et al. Heavy metals in surface water and stream sediments in Jamaica[J]. Environmental Geochemistry & Health, 1997, 19(2): 63-66.
    [9]LOubières Y, Lassence A D, Bernier M, et al. Acute, fatal, oral chromic acid poisoning[J]. J Toxicol Clin. Toxicol, 1999, 37(3): 333-336.
    [10]王永兴, 陈曦. GIS支撑下的干旱区水资源及其利用的空间分异研究[J]. 干旱区地理, 2003, 26(2): 110-115.
    [11]弥艳, 常顺利, 师庆东, 等. 艾比湖流域2008年丰水期水环境质量现状评价[J]. 湖泊科学, 2009, 21(6): 891-894.
    [12]任岩, 张飞, 王娟, 等. 新疆艾比湖流域地表水丰水期和枯水期水质分异特征及污染源解析[J]. 湖泊科学, 2017, 29(5): 1143-1157.
    [13]陈志军, 张莉萍, 张晶, 等. 博尔塔拉河径流与水化学变化分析[J]. 新疆水利, 2006(6): 13-14.
    [14]弥艳, 常顺利, 师庆东, 等. 农业面源污染对丰水期艾比湖流域水环境的影响[J]. 干旱区研究, 2010, 27(2): 278-283.
    [15]朱永生, 张莉萍. 博尔塔拉河及精河流域地表水资源现状分析[J]. 水利科技与经济, 2011, 17(6): 67-68.
    [16]张晶. 博尔塔拉河水化学空间分布特征对生态环境的影响[J]. 水利科技与经济, 2015, 21(7): 7-9.
    [17]吉仁塔. 艾比湖流域生态环境问题与治理措施[J]. 新疆林业, 2016(1): 22-24.
    [18]古力热·吾买尔. 新疆博尔塔拉河流域土壤重金属地球化学特征及潜在生态风险评价[D].乌鲁木齐:新疆大学, 2015.
    [19]张兆永, 吉力力, 阿不都外力, 等. 博尔塔拉河河水、表层底泥及河岸土壤重金属的污染和潜在危害评价[J]. 环境科学, 2015, 36(7): 2422-2429.
    [20]陈浩, 吉力力·阿不都外力, 刘文,等. 博尔塔拉河沿岸土壤重金属含量特征与有机质、pH值的关系[J]. 水土保持研究, 2016, 23(5): 210-213.
    [21]丁之勇, 马龙, 吉力力,等. 新疆博尔塔拉河湖流域土壤元素空间变异性及其影响因素[J]. 生态环境学报, 2017, 26(6): 939-948.
    [22]陈志军, 张晶, 卡米拉, 等. 博尔塔拉河流域水文特性[J]. 水资源研究, 2007, 28(1): 25-28.
    [23]陈志军, 曾庆江, 王前进. 博尔塔拉河天然水化学状况及其变化规律分析[J]. 水资源研究, 2008, 29(1): 4-5.
    [24]卢瑛, 龚子同, 张甘霖. 南京城市土壤Pb的含量及其化学形态[J]. 环境科学学报, 2002, 22(2): 156-160.
    [25]Giri S, Simgh A K. Assessment of surface water quality using heavy metal pollution index in Subarnarekha River, India[J]. Water Quality Exposure & Health, 2014, 5(4): 173-182.
    [26]Zhu G F, Su Y H, Feng Q. The hydrochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, northwest China[J]. Hydrogeology Journal, 2008, 16(1): 167-182.
    [27]Mohan S V, Nithil A P, Reddy S J. Estimation of heavy metal in drinking water and development of heavy metal pollution index[J]. Journal of Environmental Science & Health Part A Environmental Science & Engineering & Toxic & Hazardous Substance Control, 1996, A31(2): 283-289.
    [28]PrasadB, Bose J. Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas[J]. Environmental Geology, 2001, 41(1-2): 183-188.
    [29]Edet A E, Offiong O E. Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria)[J]. Geojournal, 2002, 57(4): 295-304.
    [30]柴世伟, 温琰茂, 韦献革, 等. 珠江三角洲主要城市郊区农业土壤的重金属含量特征[J]. 中山大学学报:自然科学版, 2004, 43(4): 90-94.
    [31]王军, 陈振楼, 王初,等. 上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估[J]. 环境科学, 2007, 28(3): 647-653.
    [32]雷凌明, 喻大松, 陈玉鹏, 等. 陕西泾惠渠灌区土壤重金属空间分布特征及来源[J]. 农业工程学报, 2014, 30(6): 88-96.
    [33]刘风华, 宋存义, 宋永会,等. 活性炭对含铜制药废水的吸附特性[J]. 环境科学研究, 2011, 24(3): 308-312.
    [34]张立, 袁旭音, 邓旭. 南京玄武湖底泥重金属形态与环境意义[J]. 湖泊科学, 2007, 19(1): 65-71.
    [35]于海霞, 戴爱梅. 博州膜下滴灌玉米病虫害发生特点及绿色综合防控技术[J]. 农业科技通讯, 2018(4):253-255.
    [36]赛丽蔓·马木提. 博州小麦病虫害发生特点与预测技术[J]. 农业科技通讯, 2017(6):185-186.
    [37]赛丽蔓·马木提, 哈米提·阿不都米吉提, 古海尔·买买提,等. 博州粮食作物主要病虫害发生演变初探[J]. 农业科技通讯, 2013(5):194-195.
    [38]闫夏. 芝麻绿色优质高产高效栽培技术模式[J]. 农业开发与装备, 2016(4):147-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700