用户名: 密码: 验证码:
基于神经血管单元探讨中医药治疗缺血性脑损伤的研究思路
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Traditional Chinese Medicine Treatment of Ischemic Brain Injury Based on Neurovascular Unit
  • 作者:刘抒雯 ; 杨丽华 ; 马春 ; 李淑玲 ; 郝如彬 ; 赵艳艳 ; 李欣欣
  • 英文作者:LIU Shuwen;YANG Lihua;MA Chun;LI Shuling;HAO Rubin;ZHAO Yanyan;LI Xinxin;College of Traditional Chinese Medicine,Changchun University of Traditional Chinese Medicine;The Affiliated Hospital of Changchun University of Traditional Chinese Medicine;
  • 关键词:神经血管单元 ; 缺血性脑损伤 ; 中医药
  • 英文关键词:neurovascular unit;;ischemic brain injury;;traditional Chinese medicine
  • 中文刊名:ZYHS
  • 英文刊名:Chinese Archives of Traditional Chinese Medicine
  • 机构:长春中医药大学中医学院;长春中医药大学附属医院;
  • 出版日期:2018-11-26 16:18
  • 出版单位:中华中医药学刊
  • 年:2019
  • 期:v.37
  • 基金:吉林省科学计划支撑项目(20140204045YY)
  • 语种:中文;
  • 页:ZYHS201903063
  • 页数:7
  • CN:03
  • ISSN:21-1546/R
  • 分类号:250-256
摘要
缺血性脑损伤是由多种细胞相互作用引起的级联反应,以往主要针对特定神经元或血脑屏障等结构进行研究,而忽略了大脑各个功能区的整体联系性和不同结构之间的相互作用。近年来脑保护的目标已逐步由单一结构转变为对神经和血管整体的保护,并提出神经血管单元(NVU)这一概念。研究发现NVU内存在着多种双向细胞-细胞间和细胞-细胞外基质的相互作用,这种相互作用主要由神经元、胶质细胞、血管内皮细胞和细胞外基质共同构成。当脑组织缺血缺氧时,NVU整体结构功能破坏,引起胶质细胞活化/血管内皮细胞结构改变/血脑屏障通透性破坏等一系列动态的病理变化。故在治疗过程中,以NVU整体结构为靶点,协调其内部神经元-胶质细胞-血脑屏障-细胞外基质的动态变化,对减轻神经损伤与促进其修复具有重要意义。中医药具有整体调节和综合治疗优势,在保护NVU整体与各个组分的结构功能作用显著,已成为改善缺血性脑损伤及其机制研究领域的热点。因此,基于NVU的变化深入研究中医药保护缺血性脑损伤的作用机制,在诸多靶点中选择有效的药物干预,能够为中医药治疗缺血性脑损伤提供新的治疗思路。
        Ischemic brain injury is a cascade reaction caused by multiple cellular interactions. Previous studies focused on specific neurons or blood-brain barrier structures, ignoring the global connectivity of various functional regions of the brain and the interaction between different structures. In recent years, the target of brain protection has gradually changed from a single structure to the protection of the whole nerve and blood vessel, and the concept of neurovascular unit(NVU) has been proposed. It is found that there are many bidirectional cell-cell and cell-extracellular matrix interactions in NVU, which are mainly composed of neurons, glial cells, vascular endothelial cells and extracellular matrix. During cerebral ischemia and hypoxia, the whole structure and function of NVU were destroyed, which caused a series of dynamic pathological changes, such as glial cell activation, vascular endothelial cell structure changed and blood-brain barrier permeability damaged. Therefore, in the course of treatment, it is important to take the whole structure of NVU as the target and coordinate the dynamic changes of the inner neuron, glial cell, blood-brain barrier and extracellular matrix in order to alleviate the nerve injury and promote its repair. Traditional Chinese medicine(TCM) has an advantage of holistic regulation and comprehensive therapy and plays a significant role in the protection of the structure and function of the whole and various components of NVU and becomes a hot spot in the research field of improving ischemic brain injury and its mechanism. Therefore, based on the in-depth study of NUV's mechanism of TCM's protection against ischemic brain injury, researchers can choose more effective interventions among many targets in the future, and thus providing new therapeutic ideas for TCM treatment of ischemic brain injury.
引文
[1] Arai K, Lok J, Guo S, et al. Cellular mechanisms of neurovascular damage and repair after stroke[J]. Journal of Child Neurology, 2011, 26(9):1193-1198.
    [2] 卫生部新闻办公室. 第三次中国死因调查主要情况[J]. 中国肿瘤, 2008, 17(5):344-345.
    [3] Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics-2011 update: a report from the American Heart Association[J]. Circulation, 2011, 123(4): e18-e209.
    [4] Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics 2015 update: a report from the American Heart Association[J]. Circulation, 2015, 131(4): e29-e322.
    [5] Barer D, Berge E. Thrombolytic Treatment for Ischemic Stroke: Could the Crisis of Confidence Have Been Avoided by Better Analysis of Trial Data?[J]. Drugs Aging, 2017, 34(2):79-88.
    [6] Suarez JI, Zaidat OO, Sunshine JL, et al. Endovascular administration after intravenous infusion of thrombolytic agents for the treatment of patients with acute ischemic strokes[J]. Neurosurgery, 2002, 50(2): 251-259.
    [7] Lok J, Gupta P, Guo S, et al. Cell-cell signaling in the neurovascular unit[J]. Neurochem Res, 2007, 32(12):2032-2045.
    [8] Zlokovic BV. Neurodegeneration and the neurovascular unit[J]. Nat Med, 2010, 16(12):1370-1371.
    [9] Del Zoppo GJ. Inflammation and the neurovascular unit in the setting of focal cerebral ischemia[J]. Neuroscience, 2009, 158(3):972-982.
    [10] Muoio V, Persson PB, Sendeski MM. The neurovascular unit-concept review[J]. Acta Physiologica, 2014, 210(4):790-798.
    [11] Olah M, Amor S, Brouwer N, et al. Identification of a microglia phenotype supportive of remyelination[J]. Glia, 2012, 60(2):306-321.
    [12] Hermann DM, Chopp M. Promoting brain remodelling and plasticity for stroke recovery: Therapeutic promise and potential pitfalls of clinical translation[J]. Lancet Neurol, 2012, 11(4):369-380.
    [13] Lee JH, Cui HS, Shin SK, et al. Effect of propofol posttreatment on blood-brain barrier integrity and cerebral edema after transient cerebral ischemia in rats[J]. Eur J Neurosci, 2013, 38(11):2276-2286.
    [14] Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease[J]. Nat Neurosci, 2011, 14(11): 1398-1405.
    [15] Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier[J]. Glia, 2013, 61(12):1939-1958.
    [16] Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood-brain barrier[J]. Neurobiol Dis, 2010, 37(1):13-25.
    [17] Kang EJ, Major S, Jorks D, et al. Blood-brain barrier opening to large molecules does not imply blood-brain barrier opening to small ions[J]. Neurobiol Dis, 2013, 52:204-218.
    [18] Weissa N, Millera F, Cazaubon S. The blood-brain barrier in brain homeostasis and neurological diseases[J]. Biochim Biophys Acta, 2009, 1788(4): 842-857.
    [19] Janigro D. Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood-brain barrier[J]. Epilepsia, 2012, 53(1): 26-34.
    [20] Benarroch EE. Blood-brain barrier: recent developments and clinical correlations[J]. Neurology, 2012, 78(16):1268-1276.
    [21] Lim DA, Huang YC, Alvarez-Buylla A. The adult neural stem cell niche: lessons for future neural cell replacement strategies[J]. Neurosurg Clin N Am, 2007, 18(1): 81-92.
    [22] Strbian D, Durukan A, Pitkonen M, et al. The blood brain barrier is continuously open for several weeks following transient focal cerebral ischemia[J]. Neuroscience, 2008, 153(1):175-181.
    [23] 周虎传, 张玉波, 刘磊. 血脑屏障结构的细胞学与分子学机制的研究现状[J]. 2016, 19(11):98-99.
    [24] Persidsky Y, Heilman D, Haorah J, et al. Rho-mediated regulation of tight junction during monocyte migration across blood-brain barrier in HIV-1 encephalitis ( HIVE)[J]. Blood, 2006, 107(12):4770-4880.
    [25] Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions molecular basis and pathological implication[J]. Dev Cell, 2009,16(2):209-221.
    [26] Saunders NR, Dziegielewska KM, Unsicker K, et al. Delayed astrocytic contact with cerebral blood vessels in FGF-2 deficient mice does not compromise permeability properties at the developing blood-brain barrier[J]. Dev Neurobiol, 2016, 76(11): 1201-1212.
    [27] McRae M, LaFratta LM, Nguyen BM, et al. Characterization of cell-cell junction changes associated with the formation of a strong endothelial barrier[J]. Tissue Barriers, 2018, 6(1):e1405774.
    [28] Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches[J]. Brain Res Rev, 2010, 64(2):328-363.
    [29] Khan M, Elango C, Ansari MA, et al. Caffeic acid phenethyl ester reduces neurovascular inflammation and protects rat brain following transient focal cerebral ischemia[J]. Neurochem, 2007, 102(2):365-377.
    [30] Terao S, Yilmaz G, Stokes KY, et al. Inflammatory and injury responses to ischemic stroke in obese mice[J]. Stroke, 2008, 39(3):943-950.
    [31] Chen W, Guo Y, Yang W, et al. Protective effect of ginsenoside Rb1 on integrity of blood-brain barrier following cerebral ischemia[J]. Exp Brain Res, 2015, 233(10): 2823-2831.
    [32] Sewal RK, Modi M, Saikia UN, et al. Increase in seizure susceptibility in sepsis like condition explained by spiking cytokines and altered adhesion molecules level with impaired blood brain barrier integrity in experimental model of rats treated with lipopolysaccharides[J]. 2017, 135:176-186.
    [33] Sofroniew MV, Vinters HV. Astrocytes: biology and pathology[J]. Acta Neuropathol, 2010, 119(1) :7-35.
    [34] Navarrete M, Araque A. The Cajal school and the physiological role of astrocytes: a way of thinking[J]. Front Neuroanat, 2014, 8(33):1-5.
    [35] Filous AR, Silver J. Targeting astrocytes in CNS injury and disease: A translational research approach[J]. Prog Neurobiol, 2016, 144:173-187.
    [36] Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information[J]. Trends Neurosci, 2009, 32(8):421-431.
    [37] Maki T, Hayakawa K, Pham LD, et al. Biphasic Mechanisms of Neurovascular Unit Injury and Protection In CNS Diseases[J]. CNS Neurol Disord Drug Targets, 2013, 12(3): 302-315.
    [38] 程笑, 杨欢, 杨滢霖, 等. 缺血性脑卒中后星形胶质细胞信号通路变化及潜在治疗靶点研究[J]. 中国新药杂志, 2017, 26(7):749-754.
    [39] Khandelwal PJ, Herman AM, Moussa CE. Inflammation in the early stages of neurodegenerative pathology[J]. J Neuroimmunol, 2011, 238(1/2):1-11.
    [40] Middeldorp J, Hol EM. GFAP in health and disease[J]. Prog Neurobiol, 2011, 93(3):421-443.
    [41] Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation [J]. Trends Neurosci, 2009, 32(12):638-647.
    [42] Abeysinghe HC, Phillips EL, Chin-Cheng H, et al. Modulating astrocyte transition after stroke to promote brain rescue and functional recovery:emerging targets include Rho kinase [J]. Int J Mol Sci, 2016, 17(3):288.
    [43] 王秀辉, 郑咏秋, 姚明江, 等. 大鼠脑缺血/再灌注后AQP4的表达与脑水肿的关系[J]. 中国实验方剂学杂志, 2013, 19(15):182-185.
    [44] Sica RE, Caccuri R, Quarracino C, et al. Are astrocytes executive cells within the central nervous system[J]. Arq Neuropsiquiatr, 2016, 74(8):671-678.
    [45] Cekanaviciute E, Buckwalter MS. Astrocytes: Integrative regulators of neuroinflammation in stroke and other neurological diseases[J]. Neurotherapeutics, 2016, 13(4):685-701.
    [46] Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation [J]. Trends Neurosci, 2009, 32(12):638-647.
    [47] Zheng W, Monnot AD. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases[J]. Pharmacol Ther, 2012, 133(2):177-188.
    [48] Annovazzi L, Mellai M, Bovio E, et al. Microglia immunophenotyping in gliomas[J]. Oncol Lett, 2018, 15(1):998-1006.
    [49] Sierra A, Encinas JM, Deudero JJ, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis[J]. Cell Stem Cell, 2010, 7(4): 483-495.
    [50] Hristovska I, Pascual O. Deciphering Resting Microglial Morphology and Process Motility from a Synaptic Prospect[J]. Front Integr Neurosci, 2016, 9:73.
    [51] Socodato R, Portugal CC, Rodrigues A, et al. Redox tuning of Ca2+ signaling in microglia drives glutamate release during hypoxia[J]. Free Radic Biol Med, 2018, 118: 137-149.
    [52] Xu H, Qin W, Hu X, et al. Lentivirus-mediated overexpression of OTULIN ameliorates microglia activation and neuroinflammation by depressing the activation of the NF-κB signaling pathway in cerebral ischemia/reperfusion rats[J]. J Neuroinflammation, 2018, 15(1):83.
    [53] Liu H, Uno M, Kitazato KT, et al. Peripheral oxidative biomarkers constitute a valuable indicator of the severity of oxidative brain damage in acute cerebral infarction[J]. Brain Res, 2004, 1025(1-2):43-50.
    [54] Fam HK, Choi K, Fougner L, et al, Reactive oxygen species stress increases accumulation of tyrosyl-DNA phsosphodiesterase 1 within mitochondria[J]. Sci Rep, 2018, 8(1):4304.
    [55] Faraci FM. Protecting against vascular disease in brain[J]. Am J Physiol Heart Circ Physiol, 2011, 300(5): H1566-H1582.
    [56] BesanconE, GuoS, LokJ, et al. Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke[J]. Trends Pharmacol Sci, 2008, 29(5):268-275.
    [57] Wei X, Gong J, Ma J, et al. Targeting the Dvl-1/β-arrestin2/JNK3 interaction disrupts Wnt5a-JNK3 signaling and protects hippocampal CA1 neurons during cerebral ischemia reperfusion[J]. Neuropharmacology, 2018, 135:11-21.
    [58] Kulczar C, Lubin KE, Lefebvre S, et al. Development of a direct contact astrocyte-human cerebral microvessel endothelial cells blood-brain barrier coculture model[J]. J Pharm Pharmacol. 2017, 69(12):1684-1696.
    [59] Xiong W, Knispel R, Mac Taggart J , et al. Membrane-type1 matrix metaloproteinase regulates macrophage-dependent elastolytic activity and aneurysm formation in vivo[J]. J Biol Chem, 2009, 284(3):1765-1771.
    [60] 谭燕. 中枢神经系统感染患者脑脊液和血清中MMP-2、MMP-9、MCP-1表达的研究[J]. 中国微生态学杂志, 2015, 27(4):424-428.
    [61] Lee B, Clarke D, Al Ahmad A, et al. Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents[J]. J Clin Invest, 2011, 121(8):3005-3023.
    [62] 文静, 王建, 罗世兰, 等. 中药对神经血管单元的保护作用研究进展[J]. 时珍国医国药, 2016, 27(3):707-710.
    [63] 雷亚玲, 刘擎, 罗翌. 中医药靶向神经血管单元治疗急性缺血性脑卒中的临床思考[J]. 中国中西医结合杂志, 2013, 33(9):1276-1280.
    [64] 周霞, 刘炬, 李丽, 等. 地黄梓醇的神经血管单元保护效应[J]. 中华中医药学刊, 2015, 33(11):2589-2591.
    [65] 孙顺昌, 王国峰, 赵玉芳, 等. 局灶性缺血预处理对脑缺血大鼠血管内皮生长因子表达及血管形成的影响[J]. 中国临床神经科学, 2011, 19(6):594-600.
    [66] 郭晓玲, 张海波, 陈文, 等. 灯盏细辛上调大鼠局灶性脑缺血再灌注后VEGF 的实验研究[J]. 中国中医急症, 2016, 25(6):985-1000.
    [67] 方蕾, 杨美娟, 蒋玉凤. 丹酚酸B对脑缺血再灌注损伤小鼠血管保护作用[J]. 2016, 34(12):3060-3062.
    [68] 张秋雁, 朱伟, 徐瑾瑜, 等. 丹龙醒脑方对脑缺血再灌注大鼠血管新生及对Ang - 1 蛋白表达的影响[J]. 中国实验方剂学杂志, 2016, 22(1):139-142.
    [69] 张远海. 桃红四物汤对脑缺血再灌注损伤大鼠脑内血管新生及PI3K/AKT信号转导通路的影响[J]. 蚌埠医学院学报, 2017, 42(1):36-40.
    [70] Deng Y, Xiong D, Yin C, et al. Icariside II protects against cerebral ischemia-reperfusion injury in rats via nuclear factor-kappaB inhibition and peroxisome proliferator-activated receptor upregulation[J]. Neurochem Int, 2016, 96:56-61.
    [71] 王楠, 陈克研, 郭婉姝, 等. 姜黄素对大鼠脑缺血再灌注海马神经元凋亡及 PI3K 信号因子表达的影响[J]. 解剖科学进展, 2017, 23(1):34-37.
    [72] 赵晓姝, 李璠, 曾洪艳, 等. 依达拉奉联合灯盏花素对局灶性脑缺血大鼠皮层神经元凋亡的影响[J]. 神经解剖学杂志, 2017, 33(1):15-22.
    [73] 石咏梅, 马英民, 廖君, 等. 内质网应激 PERK 通路在脑泰方提取物保护局灶性脑缺血大鼠海马神经元中的作用[J]. 中国老年学杂志, 2017, 11(37):5512-5514.
    [74] 钟晴, 童骄, 钟欣池, 等. 脑泰方提取物对大鼠脑缺血再灌注损伤后海马神经干细胞增殖及Notch1蛋白表达的影响[J]. 中华中医药学刊, 2016, 34(8):1823-1826.
    [75] 陈延, 谭子虎, 刘茜, 等. 基于p-Akt信号评价加减薯蓣丸对脑缺血大鼠海马神经元损伤的保护作用[J]. 上海中医药大学学报, 2017, 31(5):76-79.
    [76] 姜云传. 大蒜素抑制小胶质细胞活化在脑缺血再灌注模型中发挥抗炎效应的研究[J]. 免疫学杂志, 2017, 33(10):850-855.
    [77] 刘微, 张洋, 郭建超, 等. 柚皮苷对脑缺血再灌注损伤的保护作用[J]. 中风与神经疾病杂志, 2017, 34(4):292-294.
    [78] 郭建超, 苏宁, 刘微, 等. 补阳还五汤对脑缺血再灌注后星形胶质细胞 connexin43 影响机制的研究[J]. 辽宁中医杂志, 2017, 44(11):2418-2420.
    [79] 张建,龙建飞, 邹海艳, 等. 黄连解毒汤有效部位对脑缺血半暗带区星形胶质细胞活化及 Cx43 表达的影响[J]. 中草药, 2014, 45(13):1876-1882.
    [80] 杨铭, 林海燕, 乔恩奇, 等. 解毒通络方对大鼠局灶性脑缺血再灌注损伤的保护作用研究[J]. 中华中医药学刊, 2017, 35(4):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700