用户名: 密码: 验证码:
小檗碱对NAFLD大鼠肝组织氧化损伤及SIRT1/p53通路的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of berberine on oxidative damage and the SIRT1/p53 pathway in liver tissues of NAFLD rats
  • 作者:陈润森 ; 唐凯锐 ; 梁曙 ; 邓远军 ; 聂桓 ; 张玉佩 ; 金玲 ; 杨钦
  • 英文作者:CHEN Run-sen;TANG Kai-rui;LIANG Shu;DENG Yuan-jun;NIE Huan;ZHANG Yu-pei;JIN Ling;YANG Qin-he;School of Traditional Chinese Medicine,Jinan University;The First Affiliated Hospital,Jinan University;
  • 关键词:非酒精性脂肪性肝病 ; 小檗碱 ; 氧化损伤 ; SIRT1/p53信号通路
  • 英文关键词:Nonalcoholic fatty liver disease;;Berberine;;Oxidative damage;;SIRT1/p53 signaling pathway
  • 中文刊名:ZBLS
  • 英文刊名:Chinese Journal of Pathophysiology
  • 机构:暨南大学中医学院;暨南大学附属第一医院;
  • 出版日期:2019-04-23 10:11
  • 出版单位:中国病理生理杂志
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金资助项目(No.81573844; No.81774165);; 广东省中医药局项目(No.20171071);; 广东省医学科研基金资助项目(No.A2017363);; 央高校基本科研业务费专项资金资助项目(No.21616331)
  • 语种:中文;
  • 页:ZBLS201904024
  • 页数:7
  • CN:04
  • ISSN:44-1187/R
  • 分类号:157-163
摘要
目的:研究小檗碱对非酒精性脂肪性肝病(NAFLD)大鼠肝组织氧化损伤及沉默信息调节因子2同源蛋白1(SIRT1)/p53通路的影响,探讨小檗碱抗NAFLD的作用机制。方法:选用SPF级雄性SD大鼠24只,按随机数字表均分为正常组、模型组与小檗碱组,正常组给予基础饲料喂养,模型组及小檗碱组给予高脂饲料喂养,造模同时小檗碱组给予小檗碱(100 mg·kg~(-1)·d~(-1))灌服。16周后处死大鼠并采集肝脏,检测肝组织中总胆固醇(TC)和甘油三酯(TG)含量,超氧化物歧化酶(SOD)活力、丙二醛(MDA)含量及总抗氧化能力(T-AOC);HE、油红O染色与透射电镜观察肝脏组织学的改变;Western blot检测大鼠肝组织SIRT1、p53及乙酰化p53(Ac-p53)蛋白水平。结果:与模型组相比,小檗碱组大鼠肝组织TC、TG和MDA含量水平显著降低(P<0.05或P<0.01),而SOD活力和T-AOC显著升高(P<0.01);组织学结果也观察到小檗碱组大鼠肝脏脂质蓄积状态明显减轻;小檗碱组肝组织SIRT1蛋白表达水平较模型组显著上调(P<0.05),Ac-p53蛋白表达水平下调(P<0.05)。结论:小檗碱能减轻高脂饮食诱导的NAFLD大鼠肝脏脂肪变性和氧化应激损伤,其作用机制可能是通过上调SIRT1蛋白的表达,从而抑制p53的乙酰化。
        AIM: To investigate the effect of berberine on oxidative damage and silent mating type information regulation 2 homolog 1(SIRT1)/p53 pathway in the liver tissues of nonalcoholic fatty liver disease(NAFLD) rats and to explore the mechanism of berberine against NAFLD. METHODS: The male SD rats(n=24) were randomly divided into normal group, model group and berberine group(8 rats in each group). The rats in normal group was fed with normal diet, while the rats in model group and berberine group were fed with high-fat diet. The rats in berberine group was intragastrically administered with daily doses(100 mg/kg) of berberine for 16 weeks. The levels of liver total cholesterol(TC), triglyceride(TG), superoxide dismutase(SOD), malondialdehyde(MDA) and total anti-oxidant capatity(T-AOC) were measured. HE staining, oil red O straining and transmission electron microscopy were used to observe the histological changes of the livers. The protein levels of SIRT1, p53 and acetylated p53(Ac-p53) were determined by Western blot. RESULTS: Compared with model group, the levels of liver TC, TG and MDA in berberine group were significantly reduced(P<0.05 or P<0.01), and the levels of SOD and T-AOC were significantly increased(P<0.01). The results of pathological observation showed that the lipid accumulation in the liver of berberine group was significantly attenuated. Compared with model group, the expression of SIRT1 was significantly increased and the expression of Ac-p53 was obviously reduced in berberine group(P<0.01). CONCLUSION: Berberine reduces hepatic steatosis and oxidative damage in NAFLD rats induce by high-fat diet, and this effect may be associated with regulation of the SIRT1/p53 signal pathway.
引文
[1] Fan JG, Kim SU, Wong VW. New trends on obesity and NAFLD in Asia[J]. J Hepatol, 2017, 67(4):862-873.
    [2] Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis[J]. Hepatology, 2010, 52(5):1836-1846.
    [3] Penke M, Larsen PS, Schuster S, et al. Hepatic NAD salvage pathway is enhanced in mice on a high-fat diet[J]. Mol Cell Endocrinol, 2015, 412(2015):65-72.
    [4] Derdak Z, Villegas KA, Harb R, et al. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease[J]. J Hepatol, 2013, 58(4):785-791.
    [5] Liang H, Wang Y. Berberine alleviates hepatic lipid accumulation by increasing ABCA1 through the protein kinase C δ pathway[J]. Biochem Biophys Res Commun, 2018, 498(3):473-480.
    [6] Mahmoud AM, Hozayen WG, Ramadan SM. Berberine ameliorates methotrexate-induced liver injury by activating Nrf2/HO-1 pathway and PPARγ, and suppressing oxidative stress and apoptosis in rats[J]. Biomed Pharmaco-ther, 2017, 94:280-291.
    [7] 林春梅. 小檗碱对NAFLD大鼠肝组织AMPK/SIRT1/UCP2通路的调控机制[D]. 广州: 暨南大学, 2015.
    [8] Yang QH, Hu SP, Zhang YP, et al. Effect of berberine on expressions of uncoupling protein-2 mRNA and protein in hepatic tissue of non-alcoholic fatty liver disease in rats[J]. Chin J Integr Med, 2011, 17(3):205-211.
    [9] Zhou JY, Zhou SW. Protective effect of berberine on antioxidant enzymes and positive transcription elongation factor b expression in diabetic rat liver[J]. Fitoterapia, 2011, 82(2):184-189.
    [10] Jayakumar S, Harrison SA, Loomba R. Noninvasive mar-kers of fibrosis and inflammation in nonalcoholic fatty liver disease[J]. Curr Hepatol Rep, 2016, 15(2):86-95.
    [11] Zhang BJ, Xu D, Guo Y, et al. Protection by and anti-oxidant mechanism of berberine against rat liver fibrosis induced by multiple hepatotoxic factors[J]. Clin Exp Pharmacol Physiol, 2010, 35(3):303-309.
    [12] Xu Z, Feng W, Shen Q, et al. Rhizoma coptidis and berberine as a natural drug to combat aging and aging-related diseases via anti-oxidation and AMPK activation[J]. Aging Dis, 2017, 8(6):760-777.
    [13] Zhang H, Wei J, Xue R, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression[J]. Metabolism, 2010, 59(2):285-292.
    [14] Chang XX, Zhe W, Zhang JL, et al. Lipid profiling of the therapeutic effects of berberine in patients with nonalcoho-lic fatty liver disease[J]. J Transl Med, 2016, 14(1):266-276.
    [15] Liu WS, Baker SS, Baker RD, et al. Antioxidant mechanisms in nonalcoholic fatty liver disease[J]. Curr Drug Targets, 2015, 16(12):1301-1314.
    [16] 王一平, 谭华炳, 贺琴, 等. SOD、MDA与肝脏脂质沉积量的相关性研究[J]. 西南国防医药, 2009, 19(4):365-367.
    [17] Koek GH, Liedorp PR, Bast A. The role of oxidative stress in non-alcoholic steatohepatitis[J]. Clin Chim Acta, 2011, 412(15-16):1297-1305.
    [18] 赵骏, 杨超, 王传鹏, 等. 芹菜素对雄性小鼠肝脏组织总抗氧化能力、还原型谷胱甘肽/氧化型谷胱甘肽值、丙二醛含量影响研究[J]. 中国医药导报, 2013, 10(18):7-9.
    [19] Horio Y, Hayashi T, Kuno A, et al. Cellular and molecular effects of sirtuins in health and disease[J]. Clin Sci, 2011, 121(5):191-203.
    [20] Ren T, Huang C, Cheng M. Dietary blueberry and bifidobacteria attenuate nonalcoholic fatty liver disease in rats by affecting SIRT1-mediated signaling pathway[J]. Oxid Med Cell Longev, 2014, 2014:469059.
    [21] Yahagi N, Shimano H, Matsuzaka T, et al. p53 involvement in the pathogenesis of fatty liver disease[J]. J Biol Chem, 2004, 279(20):20571-20575.
    [22] Yi J, Luo JY. SIRT1 and p53, effect on cancer, senescence and beyond[J]. Biochim Biophys Acta, 2010, 1804(8):1684-1689.
    [23] Hori YS, Kuno A, Hosoda R, et al. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress[J]. PLoS One, 2013, 8(9):e73875.
    [24] Noureddin M, Mato JM, Lu SC. Nonalcoholic fatty liver disease: update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine[J]. Exp Biol Med (Maywood), 2015, 240(6):809-820.
    [25] Ding RB, Bao JL, Deng CX. Emerging roles of SIRT1 in fatty liver diseases[J]. Int J Biol Sci, 2017, 13(7):852-867.
    [26] Wang RH, Li C, Deng CX. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition[J]. Int J Biol Sci, 2010, 6(7):682-690.
    [27] Wang Y, Zhu K, Yu W, et al. MiR-181b regulates steatosis in nonalcoholic fatty liver disease via targeting SIRT1[J]. Biochem Biophys Res Commun, 2017, 493(1):227-232.
    [28] Guo Y, Li JX, Mao TY, et al. Targeting Sirt1 in a rat model of high-fat diet-induced non-alcoholic fatty liver disease: comparison of Gegen Qinlian decoction and resveratrol[J]. Exp Ther Med, 2017, 14(5):4279-4287.
    [29] Castro RE, Ferreira DM, Afonso MB, et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease[J]. J Hepatol, 2013, 58(1):119-125.
    [30] Sun YX, Xia MF, Yan HM, et al. Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21[J]. Br J Pharmacol, 2018, 175(2):374-387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700