用户名: 密码: 验证码:
中药水提液物理特性对双流体雾化器雾化效果的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of physical characteristics of Chinese medicine aqueous extracts on atomization effect of twin-fluid atomizer
  • 作者:李佳璇 ; 赵立杰 ; 冯怡 ; 鲜洁晨 ; 王优杰
  • 英文作者:LI Jiaxuan;ZHAO Lijie;FENG Yi;XIAN Jiechen;WANG Youjie;Engineering Research Center of Modern Preparation of Traditional Chinese Medicine,Ministry of Education,Innovation Research Institute of TCM,Shanghai University of Traditional Chinese Medicine;
  • 关键词:双流体雾化器 ; 雾滴粒径 ; 动力黏度 ; 动态表面张力 ; 中药水提液
  • 英文关键词:twin-fluid atomizer;;droplet size;;dynamic viscosity;;dynamic surface tension;;Chinese medicine aqueous extracts
  • 中文刊名:SHZD
  • 英文刊名:Academic Journal of Shanghai University of Traditional Chinese Medicine
  • 机构:上海中医药大学创新中药研究院中药现代制剂技术教育部工程研究中心;
  • 出版日期:2019-07-25
  • 出版单位:上海中医药大学学报
  • 年:2019
  • 期:v.33;No.130
  • 基金:上海市科委科研计划资助项目(16401902300);; 上海市卫计委中医药科技创新项目(ZYKC201603003)
  • 语种:中文;
  • 页:SHZD201904016
  • 页数:7
  • CN:04
  • ISSN:31-1788/R
  • 分类号:95-101
摘要
目的:探究中药水提液在双流体雾化器雾化过程中的特性,阐明药液的雾滴粒径与其自身物理性质间的关系,并建立专属模型。方法:测定66种中药水提液的物理性质参数,包括固含量、相对密度、动力黏度、平衡表面张力、动态表面张力等。采用Spraylink高速喷雾粒度仪测量中药水提液雾化过程中的实时雾滴粒径。统计学分析雾滴粒径与物理性质参数间的相关性,筛选与物理性质相关度最大的雾滴粒径分布值,进行曲线拟合建立数学模型。结果:①方法学考察显示,雾滴粒径测量方法精密度高,具有较好的稳定性和重现性。②中药水提液在双流体雾化器雾化过程中,当雾滴距喷嘴的垂直距离(H)增大时,雾滴粒径随之增大,雾场分布由窄变宽;同一垂直距离下,雾场边缘的雾滴粒径大于中心位置的雾滴粒径;空间位置不变的情况下,雾滴粒径随雾化压力的升高而减小。③统计学分析显示,雾滴中位粒径(D50)与动力黏度呈正相关,与平衡表面张力呈负相关,并得到拟合模型方程y=16.202-3.749x+1.359x~2-0.078x~3(y:D50,x:动力黏度)。结论:中药水提液的动力黏度是双流体雾化器雾化过程中雾滴粒径变化的重要因素,可由中药水提液的动力黏度推算雾滴的中位粒径;固含量、相对密度等其他物理性质对雾滴粒径无显著影响。
        Objective: To explore the characteristics of Chinese medicine aqueous extracts in the atomization process of twin-fluid atomizer, clarify the relationship between the droplet size and its physical properties, and establish an exclusive model. Methods: The physical properties of 66 Chinese medicine aqueous extracts were determined, including solid content, relative density, dynamic viscosity, equilibrium surface tension and dynamic surface tension. Spraylink high-speed spray particle size analyzer was used to measure the real-time atomized droplet size of Chinese medicine aqueous extracts. The correlation between droplet size and physical property parameters was analyzed by statistics, and the physical properties which showed the strongest correlation with droplet size distribution value were selected. Then, the mathematical model was established by curve fitting. Results: ① The methodological investigation displayed that the measurement method for droplet size showed high precision, good stability and reproducibility. ② In the atomization process of twin-fluid atomizer, with the increase of vertical distance(H) between the droplets and the nozzle, the droplet size was increased accordingly, and the distribution of the mist field became narrower to wider; at the same vertical distance, the droplet size at the edge of the mist field was larger than that at the center position; when the spatial position was unchanged, the droplet size was decreased by the increasing of atomization pressure. ③ Statistical analysis showed that the median droplet size(D50) was positively correlated with the dynamic viscosity, and negatively correlated with the equilibrium surface tension. The fitted model equation was shown as y=16.202-3.749 x+1.359 x~2-0.078 x~(3 )(y: D50, x: dynamic viscosity). Conclusion: The dynamic viscosity of Chinese medicine aqueous extracts is an important factor for droplet size change during the atomization process of twin-fluid atomizer, and the median droplet size can be calculated from the dynamic viscosity of Chinese medicine aqueous extracts. Other physical properties such as solid content and relative density show no significant effect on the droplet size.
引文
[1] 肖芬.料雾粒度分布的实验分析和喷雾干燥设备的轨迹法设计[D].杭州:浙江大学,2002.
    [2] 朱余乐,吴玉新,冯乐乐,等.双流体雾化喷嘴的液膜模型[J].清华大学学报(自然科学版),2017,57(11):1228- 1232.
    [3] 王喜忠,于才渊.喷雾干燥[M].北京:化学工业出版社,2003:44
    [4] 曹建明.液体喷雾学[M].北京:北京大学出版社,2013:186.
    [5] 王潇楠.农药雾滴漂移及减飘方法研究[D].北京:中国农业大学,2017.
    [6] 李佳璇,施晓虹,赵立杰,等.表界面特性在药物制剂研究中的应用现状[J].中国实验方剂学杂志,2019,25(2):1- 8.
    [7] 陈建文,张志伟,王长周,等.液体黏度和表面张力对雾化颗粒粒径的影响[J].东北大学学报(自然科学版),2010,31(7):1023- 1025.
    [8] 王宇,李晓,张明建,等.烟草加料过程中双流体喷嘴雾化粒径的分布特性[J].烟草科技,2018,51(3):78- 86.
    [9] 王双双,何雄奎,宋坚利,等.农用喷头雾化粒径测试方法比较及分布函数拟合[J].农业工程学报,2014,30(20):34- 42.
    [10] PAN L C,ZHANG F G,MENG R,et al.Anomalous change of Airy disk with changing size of spherical particles[J].J Quant Spectrosc Ra,2016,170:83- 89.
    [11] PAN L C,GE B Z,ZHANG F G.Indetermination of particle sizing by laser diffraction in the anomalous size ranges[J].J Quant Spectrosc Ra,2017,199:20- 25.
    [12] 胡华,张福根,吕且妮,等.激光粒度仪的测量上限[J].光学学报,2018,38(4):355- 361.
    [13] 何玲,王国宾,胡韬,等.喷雾助剂及施液量对植保无人机喷雾雾滴在水稻冠层沉积分布的影响[J].植物保护学报,2017,46(6):1046- 1052.
    [14] 马川川.奶粉气流式喷雾干燥过程中粘壁现象的研究[D].济南:齐鲁工业大学,2015.
    [15] 张瑞瑞,张真,徐刚,等.喷雾助剂类型及浓度对喷头雾化效果影响[J].农业工程学报,2018,34(20):36- 43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700