用户名: 密码: 验证码:
构造地貌学:构造-气候-地表过程相互作用的交叉研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tectonic geomorphology: An interdisciplinary study of the interaction among tectonic climatic and surface processes
  • 作者:刘静 ; 张金玉 ; 葛玉魁 ; 王伟 ; 曾令森 ; 李根 ; 林旭
  • 英文作者:Jing Liu-Zeng;Jinyu Zhang;Yukui Ge;Wei Wang;Lingsen Zeng;Gen Li;Xu Lin;State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration;Institute of Geology, Chinese Geological Academy;Department of Earth, Planetary and Space Sciences, University of California;College of Geography and Environment, Shandong Normal University;
  • 关键词:构造地貌 ; 构造-气候-地表过程 ; 地貌演化 ; 地质测年技术 ; 空间探测技术
  • 英文关键词:tectonic geomorphology;;tectonic-climatic and surface processes;;landscape evolution;;geochronology;;remote sensing techniques
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:中国地震局地质研究所地震动力学国家重点实验室;中国地质科学院地质研究所;Department of Earth, Planetary and Space Sciences, University of California;山东师范大学地理与环境学院;
  • 出版日期:2018-10-30
  • 出版单位:科学通报
  • 年:2018
  • 期:v.63
  • 基金:国家重点研发计划(2016YFC0600310);; 国家自然科学基金(41761144065,41502188);; 中国地震局地质研究所地震动力学重点实验室项目(LED2016A02)资助
  • 语种:中文;
  • 页:KXTB201830003
  • 页数:19
  • CN:30
  • ISSN:11-1784/N
  • 分类号:18-36
摘要
构造地貌学是发展迅速的新兴交叉学科.与传统地貌学不同,构造地貌学是一种定量地貌学,强调对地貌过程的定量描述,其核心概念是构造-气候-地表过程相互作用,聚焦于以量化的方式具体阐述构造活跃造山带地区气候、地形、水文、物理和化学剥蚀、沉积以及岩石变形之间的相互作用.本文首先阐释构造地貌学的主要科学问题与核心概念,即构造、气候和地表过程之间的相互作用.随后简要介绍构造地貌学的主要研究方法和手段,特别是对学科发展起到重要推动作用的测年手段(如宇宙成因核素和低温热年代学)和空间探测技术手段(如LiDAR).基于近年来构造地貌学的研究实例,梳理了构造-气候-地表过程相互作用的研究中获得的一些重要认知,这些研究实例涵盖的时空尺度巨大:时间跨度从数小时到百万年,空间跨度从单个断裂到整个造山带.这些跨度广泛的研究对理解造山带的地形演化具有重大的启示意义.最后,简要总结了构造地貌学的前沿问题.
        Tectonic geomorphology is a fast-developing interdisciplinary research field. Different from traditional geomorphology,tectonic geomorphology strongly shifts to quantify the geomorphic processes. The central tenet in tectonic geomorphology is to clarify the interactions among tectonic, climatic, and surface processes, and to provide quantitative descriptions of climate, topography, hydrology, physical and chemical erosion, deposition and rock deformation and their relationships in tectonically active settings.In this review, we first introduce major scientific questions and central concepts, the techniques and methods commonly used in this field, especially the major game-changing dating techniques(e.g., cosmogenic nuclide dating and low-temperature thermochronology) and remote sensing or surveying methods(e.g., LiDAR). Then we present some case studies in the past three decades showing lines of evidence that the interaction among tectonic, climatic, and surface processes can occur in a wide range of temporal and spatial scales, ranging from hours to million-year in time, and from single fault to orogenic belt in space. We also synthesize important progresses in this field toward a better understanding of the topographic evolution of orogenic belts:(1) Tectonic, climatic and surface processes collaborate to shape the landscape such that tectonic activities alone do not necessarily lead to topographic growth. For instance, when erosion and tectonic accretion are in equilibrium, topographic steady state is reached, with no surface uplifting despite on-going tectonic activity.(2) Sedimentary records in range-front basins, such as the increase of deposition rate, or the occurrence of conglomerates, were often used as proxies of tectonic uplift of mountain ranges in early studies. However, sedimentary sequence should be a collective product of tectonic, climatic, and surface processes. These commonly-used proxies for tectonic activity can also be due to climate changes, instead.(3) Tectonics plays a key and leading role in the coupling of tectonic-climatic-surface process; climatic and surface processes influence but do not drive tectonics.(4) Isostatic response to erosion will lead to the rebound of mountain peaks, but the overall effect of erosion is to lower the mean elevation. Thus, uplift due to isostatic rebound is a secondary component of tectonics. Lastly, we outline in brief a list of outstanding scientific questions remaining to be answered in the field.
引文
1 Burbank D W,Anderson R S.Tectonic Geomorphology.2nd ed.West Sussex:Wiley-Blackwell,2011,19.198-200
    2 Willett S D,Hovius N,Brandon M T,et al.Tectonics,Climate,and Landscape Evolution.Boulder,USA:Geological Society of America,2006,398.vii-xi
    3 Pinter N,Brandon M T.How erosion builds mountains.Sci Am,1997,276:74-79
    4 Avouac J P.Mountain building,erosion,and the seismic cycle in the Nepal Himalaya.Adv Geophys,2003,46:1-80
    5 Molnar P,England P.Late Cenozoic uplift of mountain ranges and global climate change:Chicken or egg?Nature,1990,346:29-34
    6 Wang P,Scherler D,Liu-Zeng J,et al.Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in southern Tibet.Science,2014,346:978-981
    7 Molnar P,England P,Martinod J.Mantle dynamics,uplift of the Tibetan Plateau,and the Indian monsoon.Rev Geophys,1993,31:357-396
    8 An Z,Kutzbach J E,Prell W L,et al.Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times.Nature,2001,411:62-66
    9 Wang P X.Cenozoic deformation and history of sea-land interactions in Asia(in Chinese).Earth Sci-J China Univ Geosci,2005,30:1-18[汪品先.新生代亚洲形变与海陆相互作用.地球科学,2005,30:1-18]
    10 Sun J M.Case study based on earth system science theory-Geomorphic,environmental,and climatic effects of the tectonic uplift of the Tibetan Plateau(in Chinese).Acta Sci Nat Univ Sunyatseni,2014,53:1-9[孙继敏.地球系统科学的研究范例--青藏高原隆升的地貌、环境、气候效应.中山大学学报(自然科学版),2014,53:1-9]
    11 von Blanckenburg F,Willenbring J K.Cosmogenic nuclides:Dates and rates of earth-surface change.Elements,2014,10:341-346
    12 Ehlers T A,Farley K A.Apatite(U-Th)/He thermochronometry:Methods and applications to problems in tectonic and surface processes.Earth Planet Sci Lett,2003,206:1-14
    13 Willett S D,Slingerland R,Hovius N.Uplift,shortening,and steady-state topography in active mountain belts.Am J Sci,2001,301:455-485
    14 Haugerud R A,Harding D J,Johnson S Y,et al.High-resolution lidar topography of the Puget Lowland,Washington-A bonanza for earth science.GSA Today,2003,(6):4-10
    15 Hilley G E,Ramón Arrowsmith J.Geomorphic response to uplift along the Dragon’s back pressure ridge,Carrizo Plain,California.Geology,2008,36:367-370
    16 Liu J,Chen T,Zhang P Z,et al.Illuminating the active Haiyuan fault,China by airborne light detection and ranging(in Chinese).Chin Sci Bull,2013,58:41-45[刘静,陈涛,张培震,等.机载激光雷达扫描揭示海原断裂带微地貌的精细结构.科学通报,2013,58:41-45]
    17 Oskin M E,Arrowsmith J R,Hinojosa C A,et al.Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential lidar.Science,2012,335:702-705
    18 Westoby M J,Brasington J,Glasser N F,et al.‘Structure-from-motion’photogrammetry:A low-cost,effective tool for geoscience applications.Geomorphology,2012,179:300-314
    19 Thoma D P,Gupta S C,Bauer M E,et al.Airborne laser scanning for riverbank erosion assessment.Remote Sens Environ,2005,95:493-501
    20 Cobby D M,Mason D C,Davenport I J.Image processing of airborne scanning laser altimetry data for improved river flood modelling.Isprs J Photogramm Remote Sens,2001,56:121-138
    21 French J R.Airborne lidar in support of geomorphological and hydraulic modelling.Earth Surface Proc Landf,2010,28:321-335
    22 Challis K.Airborne laser altimetry in alluviated landscapes.Archaeol Prospect,2006,13:103-127
    23 Nelson P A,Smith J A,Miller A J.Evolution of channel morphology and hydrologic response in an urbanizing drainage basin.Earth Surface Proc Landf,2006,31:1063-1079
    24 Notebaert B,Verstraeten G,Govers G,et al.Qualitative and quantitative applications of Lidar imagery in fluvial geomorphology.Earth Surface Proc Landf,2009,34:217-231
    25 Gosse J C,Phillips F M.Terrestrial in situ cosmogenic nuclides:Theory and application.Quat Sci Rev,2001,20:1475-1560
    26 Lal D.Cosmic ray labeling of erosion surfaces:In situ nuclide production rates and erosion models.Earth Planet Sci Lett,1991,104:424-439
    27 Small E E,Anderson R S,Repka J L,et al.Erosion rates of alpine bedrock summit surfaces deduced from in situ 10Be and 26Al.Earth Planet Sci Lett,1997,150:413-425
    28 von Blanckenburg F.The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment.Earth Planet Sci Lett,2005,237:462-479
    29 Charreau J,Blard P H,Puchol N,et al.Paleo-erosion rates in central Asia since 9 Ma:A transient increase at the onset of quaternary glaciations?Earth Planet Sci Lett,2011,304:85-92
    30 Heimsath A M,Dietrich W E,Nishiizumi K,et al.Cosmogenic nuclides,topography,and the spatial variation of soil depth.Geomorphology,1999,27:151-172
    31 Schaller M,Ehlers T A,Blum J D,et al.Quantifying glacial moraine age,denudation,and soil mixing with cosmogenic nuclide depth profiles.J Geophys Res-Earth Surf,2009,114:18
    32 Kurz M D.In situ production of terrestrial cosmogenic helium and some applications to geochronology.Geochim Cosmochim Acta,1986,50:2855-2862
    33 Sch?fer J M,Ivy-Ochs S,Wieler R,et al.Cosmogenic noble gas studies in the oldest landscape on earth:Surface exposure ages of the Dry Valleys,Antarctica.Earth Planet Sci Lett,1999,167:215-226
    34 Dodson M H.Closure temperature in cooling geochronological and petrological systems.Contrib Mineral Petrol,1973,40:259-274
    35 Gleadow A J W.Fission-track dating methods:What are the real alternatives?Nucl Tracks,1981,5:3-14
    36 Reiners P W,Brandon M T.Using thermochronology to understand orogenic erosion.Annu Rev Earth Planet Sci,2006,34:419-466
    37 Gleadow A J W.Fission track dating methods:A manual of principles and techniques,1984
    38 Donelick R A,O’Sullivan P B,Ketcham R A.Apatite fission-track analysis.Rev Mineral Geochem,2005,58:49-94
    39 Palissari R,Guedes S,Curvo E A C,et al.Extrapolation of zircon fission-track annealing models.Radiat Meas,2013,50:192-196
    40 Farley K A.(U-Th)/He dating:Techniques,calibrations,and applications.Rev Mineral Geochem,2002,47:819-844
    41 Wolf R A,Farley K A,Kass D M.Modeling of the temperature sensitivity of the apatite(U-Th)/He thermochronometer.Chem Geol,1998,148:105-114
    42 Braun J.Strong imprint of past orogenic events on the thermochronological record.Tectonophysics,2016,683:325-332
    43 Gallagher K,Stephenson J,Brown R,et al.Low temperature thermochronology and modeling strategies for multiple samples 1:Vertical profiles.Earth Planet Sci Lett,2005,237:193-208
    44 Wang Y.Some thoughts on tectonothermochronology(in Chinese).Earth Sci Front,2004,11:435-443[王瑜.构造热年代学--发展与思考.地学前缘,2004,11:435-443]
    45 Chen W,Wan Y S,Li H Q,et al.Isotope geochronology:Technique and application(in Chinese).Acta Geol Sin,2011,85:1917-1947[陈文,万渝生,李华芹,等.同位素地质年龄测定技术及应用.地质学报,2011,85:1917-1947]
    46 Willett S D,Brandon M T.Some analytical methods for converting thermochronometric age to erosion rate.Geochem Geophys Geosyst,2013,14:209-222
    47 Avdeev B,Niemi N A,Clark M K.Doing more with less:Bayesian estimation of erosion models with detrital thermochronometric data.Earth Planet Sci Lett,2011,305:385-395
    48 Enkelmann E,Zeitler P K,Pavlis T L,et al.Intense localized rock uplift and erosion in the St Elias orogen of Alaska.Nat Geosci,2009,2:360-363
    49 Bernet M,Spiegel C.Detrital thermochronology:Provenance analysis,exhumation,and landscape evolution of mountain belts.Spec Pap Geol Soc Am,2004,378:1-126
    50 Duvall A R,Clark M K,Avdeev B,et al.Widespread late Cenozoic increase in erosion rates across the interior of eastern Tibet constrained by detrital low-temperature thermochronometry.Tectonics,2012,31:23
    51 Zheng D W,Wang F,Zhang P Z,et al.Apatite(U-Th)/He dating method-A low temperature thermochronometer.Seismol Geol,2000,22:427-435[郑德文,王非,张培震.磷灰石U-Th/He法--一种低温热年代计.地震地质,2000,22:427-435]
    52 Beaumont C,Jamieson R A,Nguyen M,et al.Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation.Nature,2001,414:738-742
    53 Willett S D.Orogeny and orography:The effects of erosion on the structure of mountain belts.J Geophys Res:Solid Earth,1999,104:28957-28981
    54 England P,Molnar P.Surface uplift,uplift of rocks,and exhumation of rocks.Geology,1990,18:1173-1177
    55 Gaillardet J,Dupre B,Louvat P,et al.Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers.Chem Geol,1999,159:3-30
    56 Galy V,France-Lanord C,Beyssac O,et al.Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system.Nature,2007,450:407-410
    57 Li G,Hartmann J,Derry L A,et al.Temperature dependence of basalt weathering.Earth Planet Sci Lett,2016,443:59-69
    58 Hemingway J D,Hilton R G,Hovius N,et al.Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils.Science,2018,360:209
    59 Maher K,Chamberlain C P.Hydrologic regulation of chemical weathering and the geologic carbon cycle.Science,2014,343:1502-1504
    60 Pagani M,Zachos J C,Freeman K H,et al.Marked decline in atmospheric carbon dioxide concentrations during the Paleogene.Science,2005,309:600-603
    61 Torres M A,West A J,Li G.Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales.Nature,2014,507:346-349
    62 Willett S D,Schlunegger F,Picotti V.Messinian climate change and erosional destruction of the central European Alps.Geology,2006,34:613-616
    63 Liu C,Linde A T,Sacks I S.Slow earthquakes triggered by typhoons.Nature,2009,459:833-836
    64 Bettinelli P,Avouac J P,Flouzat M,et al.Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology.Earth Planet Sci Lett,2008,266:332-344
    65 Bollinger L,Perrier F,Avouac J P,et al.Seasonal modulation of seismicity in the Himalaya of Nepal.Geophys Res Lett,2007,34:L08304
    66 Gao S S,Silver P G,Linde A T,et al.Annual modulation of triggered seismicity following the 1992 Landers earthquake in California.Nature,2000,406:500
    67 Heki K.Snow load and seasonal variation of earthquake occurrence in Japan.Earth Planet Sci Lett,2003,207:159-164
    68 Stewart I S,Sauber J,Rose J.Glacio-seismotectonics:Ice sheets,crustal deformation and seismicity.Quat Sci Rev,2000,19:1367-1389
    69 Larsen C F,Motyka R J,Freymueller J T,et al.Rapid viscoelastic uplift in southeast Alaska caused by post-little ice age glacial retreat.Earth Planet Sci Lett,2005,237:548-560
    70 Dietrich R,Ivins E,Casassa G,et al.Rapid crustal uplift in Patagonia due to enhanced ice loss.Earth Planet Sci Lett,2010,289:22-29
    71 Jellinek A,Manga M,Saar M.Did melting glaciers cause volcanic eruptions in eastern California?Probing the mechanics of dike formation.J Geophys Res,2004,109:B09206
    72 Sigvaldason G E,Annertz K,Nilsson M.Effect of glacier loading/deloading on volcanism:Postglacial volcanic production rate of the Dyngjufj?ll area,central Iceland.Bull Volcanol,1992,54:385-392
    73 Jull M,McKenzie D.The effect of deglaciation on mantle melting beneath Iceland.J Geophys Res:Solid Earth,1996,101:21815-21828
    74 Maclennan J,Jull M,McKenzie D,et al.The link between volcanism and deglaciation in Iceland.Geochem Geophys Geosys,2002,3:1-25
    75 Huybers P,Langmuir C.Feedback between deglaciation,volcanism,and atmospheric CO2.Earth Planet Sci Lett,2009,286:479-491
    76 Steer P,Simoes M,Cattin R,et al.Erosion influences the seismicity of active thrust faults.Nat Commun,2014,5:7
    77 Berger A L,Spotila J A.Denudation and deformation in a glaciated orogenic wedge:The St.Elias orogen,Alaska.Geology,2008,36:523-526
    78 Thomson S N,Brandon M T,Tomkin J H,et al.Glaciation as a destructive and constructive control on mountain building.Nature,2010,467:313-317
    79 Konstantinovskaia E,Malavieille J.Erosion and exhumation in accretionary orogens:Experimental and geological approaches.Geochem Geophys Geosys,2005,6:Q02006
    80 Montgomery D R,Balco G,Willett S D.Climate,tectonics,and the morphology of the Andes.Geology,2001,29:579-582
    81 Beaumont C,Jamieson R A,Mai H N,et al.Crustal channel flows:1.Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen.J Geophys Res Solid Earth,2004,109:B06406
    82 Reiners P W,Ehlers T A,Mitchell S G,et al.Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades.Nature,2003,426:645-647
    83 Hodges K,Hurtado J,Whipple K.Southward extrusion of Tibetan crust and its effect on Himalayan tectonics.Tectonics,2001,20:799-809
    84 Thiede R C,Ehlers T A.Large spatial and temporal variations in Himalayan denudation.Earth Planet Sci Lett,2013,371-372:278-293
    85 Whipple K X.The influence of climate on the tectonic evolution of mountain belts.Nat Geosci,2009,2:97-104
    86 Zeitler P K,Meltzer A S,Koons P O,et al.Erosion,Himalayan geodynamics,and the geomorphology of metamorphism.GSA Today,2001,11:4-9
    87 Koons P O,Zeitler P K,Hallet B.Tectonic aneurysms and mountain building.Treat Geomorphol,2013,318-349
    88 Scher H D,Martin E E.Timing and climatic consequences of the opening of Drake Passage.Science,2006,312:428-430
    89 Zachos J,Pagani M,Sloan L,et al.Trends,rhythms,and aberrations in global climate 65 Ma to present.Science,2001,292:686
    90 Abels H A,Dupont-Nivet G,Xiao G Q,et al.Step-wise change of Asian interior climate preceding the Eocene-Oligocene Transition(EOT).Palaeogeogr Palaeoclimatol Palaeoecol,2011,299:399-412
    91 Sun J M,Liu T S.The age of the Taklimakan Desert.Science,2006,312:1621-1621
    92 Raymo M E,Ruddiman W F.Tectonic forcing of late Cenozoic climate.Nature,1992,359:117-122
    93 Raymo M E.The Himalayas,organic carbon burial,and climate in the Miocene.Paleoceanography,1994,9:399-404
    94 Zeitler P K,Meltzer A S,Brown L,et al.Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block,Tibet.Spec Pap Geol Soc Am,2014,507:23-58
    95 Finlayson D P,Montgomery D R,Hallet B.Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas.Geology,2002,30:219-222
    96 Burg J P,Nievergelt P,Oberli F,et al.The Namche Barwa syntaxis:Evidence for exhumation related to compressional crustal folding.JAsian Earth Sci,1998,16:239-252
    97 Finnegan N J,Hallet B,Montgomery D R,et al.Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif,Tibet.Geol Soc Am Bull,2008,120:142-155
    98 Koons P O.Mechanical links between erosion and metamorphism in Nanga Parbat,Pakistan Himalaya.Am J Sci,2002,302:749-773
    99 Lang K A,Huntington K W.Antecedence of the Yarlung-Siang-Brahmaputra River,eastern Himalaya.Earth Planet Sci Lett,2014,397:145-158
    100 Lang K A,Huntington K W,Burmester R,et al.Rapid exhumation of the eastern Himalayan syntaxis since the late Miocene.Geol Soc Am Bull,2016,128:B31419.31411
    101 Enkelmann E,Ehlers T A,Zeitler P K,et al.Denudation of the Namche Barwa antiform,eastern Himalaya.Earth Planet Sci Lett,2011,307:323-333
    102 Montgomery D R,Bernard H,Liu Y,et al.Evidence for Holocene megafloods down the Tsangpo River gorge,Southeastern Tibet.Quat Res,2004,62:201-207
    103 Korup O,Montgomery D R.Tibetan Plateau river incision inhibited by glacial stabilization of the Tsangpo gorge.Nature,2008,455:786-789
    104 Zheng D W,Zhang P Z,Wan J L,et al.Tectonic events,climate and conglomerate:Example from Jishishan mountain and Linxia basin(in Chinese).Quat Sci,2006,26:63-69[郑德文,张培震,万景林,等.构造、气候与砾岩--以积石山和临夏盆地为例.第四纪研究,2006,26:63-69]
    105 He Y W.The age of formation of the Chengdu basin and features of its early deposits(in Chinese).Geol Rev,1992,38:149-156[何银武.论成都盆地的成生时代及其早期沉积物的一般特征.地质论评,1992,38:149-156]
    106 Li J J,Wen S X,Zhang Q S,et al.Discussion on the age,range and form of the Qinghai-Tibet Plateau uplift(in Chinese).Sci China,1979,6:78-86[李吉均,文世宣,张青松,等.青藏高原隆起的时代、幅度和形式的探讨.中国科学,1979,6:78-86]
    107 Li J J,Fang X M.Study on the uplift of Qinghai-Tibet Plateau and environmental changes(in Chinese).Chin Sci Bull,1998,43:1568-1574[李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43:1568-1574]
    108 Huang J Q,Chen B W.On the formation of Pliocene-Quaternary molasses in the Tethy-Himalaya tectonic domain and its relation with the Indian plate motion(in Chinese).In:Book Newsroom in Ministry of Geology and Mineral of China,ed.Scientific Papers on Geology for International Exchange:Prepared for the 26th International Geological Congress.Beijing:Publishing House of Geology,1980.1-14[黄汲清,陈炳蔚.特提斯-喜马拉雅构造域上新世-第四纪磨拉斯的形成及其与印度板块活动的关系.见:地质部书刊编辑室编.国际交流地质学术论文集-1(构造地质、地质力学).北京:地质出版社,1980.1-14]
    109 Zheng H B,Chen H Z,Jin H L,et al.Magnetostratigraphic evidence for the Pliocene-early Pleistocene uplift of the northern Tibetan Plateau(in Chinese).Marine Geol Quat Geol,2002,22:57-62[郑洪波,陈惠忠,靳鹤龄,等.上新世-早更新世青藏高原北缘隆升的磁性地层学证据.海洋地质与第四纪地质,2002,22:57-62]
    110 Blackstone D L.Late Cretaceous and Cenozoic history of Laramie basin region,southeast Wyoming.Geol Soc Am Mem,1975,144:249-279
    111 Hay W W,Shaw C A,Wold C N.Mass-balanced paleogeographic reconstructions.Geol Runds,1989,78:207-242
    112 Zhang P Z,Molnar P,Downs W R.Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates.Nature,2001,410:891
    113 Molnar P.Late cenozoic increase in accumulation rates of terrestrial sediment:How might climate change have affected erosion rates?Ann Rev Earth Planet Sci,2004,32:67-89
    114 Whipple K X.Geography can erosion drive tectonics?Science,2014,346:918-919
    115 Godard V,Bourles D L,Spinabella F,et al.Dominance of tectonics over climate in Himalayan denudation.Geology,2014,42:243-246
    116 Scherler D,Bookhagen B,Strecker M R.Tectonic control on 10 Be-derived erosion rates in the Garhwal Himalaya,India.J Geophys Res Earth Surface,2014,119:83-105
    117 Bendick R,Ehlers T A.Extreme localized exhumation at syntaxes initiated by subduction geometry.Geophys Res Lett,2014,41:5861-5867
    118 Simpson G.Role of river incision in enhancing deformation.Geology,2004,32:341-344
    119 King G E,Herman F,Guralnik B.Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry.Science,2016,353:800-804
    120 Seward D,Burg J P.Growth of the Namche Barwa syntaxis and associated evolution of the Tsangpo Gorge:Constraints from structural and thermochronological data.Tectonophysics,2008,451:282-289
    121 Burbank D W.Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin.Nature,1992,357:680-683
    122 Montgomery D R.Valley incision and the uplift of mountain peaks.J Geophys Res:Solid Earth,1994,99:13913-13921
    123 Small E E,Anderson R S.Geomorphically driven late Cenozoic rock uplift in the Sierra Nevada,California.Science,1995,270:277-281
    124 Small E E,Anderson R S.Pleistocene relief production in Laramide mountain ranges,western United States:Comment and reply.Geology,1998,26:123-126
    125 Whipple K X,Kirby E,Brocklehurst S H.Geomorphic limits to climate-induced increases in topographic relief.Nature,1999,401:39-43
    126 Dietrich W E,Perron J T.The search for a topographic signature of life.Nature,2006,439:411-418
    127 Perron J T.Climate and the pace of erosional landscape evolution.Annu Rev Earth Planet Sci,2017,45:561-591
    128 An P J,Zhang Z Q,Wang L W.Review of earth critical zone research(in Chinese).Adv Earth Sci,2016,31:1228-1234[安培浚,张志强,王立伟.地球关键带的研究进展.地球科学进展,2016,31:1228-1234]
    129 Council N R.Basic Research Opportunities in Earth Science.Washington DC:National Academy Press,2000
    130 Elsworth D,Spiers C J,Niemeijer A R.Understanding induced seismicity.Science,2016,354:1380-1381
    131 Ellsworth W L.Injection-induced earthquakes.Science,2013,341:142
    132 Galis M,Ampuero J P,Mai P M,et al.Induced seismicity provides insight into why earthquake ruptures stop.Sci Adv,2017,3:10
    133 Waters C N,Zalasiewicz J,Summerhayes C,et al.The anthropocene is functionally and stratigraphically distinct from the Holocene.Science,2016,351:2622

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700