用户名: 密码: 验证码:
南堡凹陷现今地应力特征及影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and influencing factors of in-situ stress of Nanpu sag,Bohai Bay basin, China
  • 作者:徐珂 ; 戴俊生 ; 商琳 ; 房璐 ; 冯建伟 ; 杜赫
  • 英文作者:XU Ke;DAI Junsheng;SHANG Lin;FANG Lu;FENG Jianwei;DU He;School of Geosciences, China University of Petroleum;Exploration and Development Institute,PetroChina Tarim Oil Company;Exploration and Development Institute,PetroChina Jidong Oil Company;
  • 关键词:南堡凹陷 ; 现今地应力 ; 影响因素 ; 静态因素 ; 动态因素
  • 英文关键词:Nanpu sag;;current in-situ stress;;influencing factors;;static factors;;dynamic factors
  • 中文刊名:ZGKD
  • 英文刊名:Journal of China University of Mining & Technology
  • 机构:中国石油大学(华东)地球科学与技术学院;中国石油塔里木油田公司勘探开发研究院;中国石油冀东油田公司勘探开发研究院;
  • 出版日期:2018-11-09 13:17
  • 出版单位:中国矿业大学学报
  • 年:2019
  • 期:v.48;No.228
  • 基金:国家科技重大专项(2017ZX05013006-003)
  • 语种:中文;
  • 页:ZGKD201903011
  • 页数:14
  • CN:03
  • ISSN:32-1152/TD
  • 分类号:107-120
摘要
为了明确影响南堡凹陷现今地应力分布的各个因素并确定主控因素,基于80余组实测地应力数据,并结合测井计算、数值模拟及理论推导的手段,建立了埋藏深度、岩性、断层、构造形态、孔隙流体、温度及压裂裂缝与现今地应力之间的关系,定量分析了各个因素对地应力大小及方向的影响程度,认为南堡凹陷现今地应力分布的差异是动静态因素共同作用的结果.研究结果表明:埋深直接影响地应力的大小,其分量及应力系数随埋深增大呈规律性变化,且地应力状态发生2次转换;岩性的非均质性是地应力大小离散分布的重要原因,对地应力方向造成不超过10°的微弱偏转;断层引起周围一定范围内地应力大小显著变化并造成地应力方向杂乱分布,应力集中程度最高可达10余倍;构造形态对水平应力的影响尤其显著;孔隙流体通过改变岩石力学性质和孔隙压力影响了地应力,其大小变化幅度约18~30 MPa,方向最大变化约10°;地温引起地应力微弱且均匀变化,而注水导致的温度变化能够造成地应力大小和方向的突变,应力大小最高可达15 MPa,方向偏转超过10°,但是影响范围仅限于井筒周围;压裂裂缝引起井筒周围局部应力场的明显扰动.静态因素的影响方式具有一定规律性,而动态因素往往引起井筒周围局部应力场的突变,导致地应力的离散分布.
        To clarify the various factors affecting the current in-situ stress distribution in Nanpu sag and determine the main controlling factors, the relationship between burial depth, lithology, faults, structural morphology, pore fluid, temperature, hydraulic fracture and current in-situ stress was established based on more than 80 sets of measured current in-situ data, logging calculation, numerical simulation and theoretical calculation. Then the influence of various factors on the magnitude and orientation of current in-situ stress was quantitatively analyzed. It is considered that the difference of in-situ stress distribution in Nanpu sag is the consequence of dynamic and static factors. The results show that the buried depth has a direct impact on the magnitude of in-situ stress, and the components and coefficients of in-situ stress change regularly and two times conversion of in-situ stress state has occurred with the increase of buried depth. The heterogeneity of lithology is an important reason for the discrete distribution of in-situ stress magnitude, and causes slight deflection that no more than 10 degrees of orientation of in-situ stress. Faults can cause the magnitude and orientation of in-situ stress to change significantly in a certain range around and stress concentration can be up to more than 10 times. The influence of structural morphology on horizontal stress is especially remarkable. Pore fluid influences the in-situ stress by changing rock mechanical properties and pore pressure, and has obvious influence on the magnitude and orientation of in-situ stress, the magnitude of stress changes about 18~30 MPa and the orientation is deflected about 10°. Geotemperature causes the uniform and slight change of in-situ stress, and the change of temperature conducted by water injection not only causes the change of stress magnitude, but also causes the deflection of stress orientation. The magnitude of stress can be up to 15 MPa and the orientation is deflected by more than 10°, but the influence range is limited around the wellbore. Hydraulic fracture can make obvious disturbance to the local stress field around the wellbore, but the influence range is limited. Static factors have certainly regular influence on in-situ stress. Dynamic factors cause the significant changes of local stress field around wellbore, resulting in the discrete distribution of in-situ stress.
引文
[1] 王平.含油盆地构造力学原理[M].北京:石油工业出版社,1993:1-2.WANG Ping.Structural mechanics of oil-bearing basins[M].Beijing:Petroleum Industry Press,1993:1-2.
    [2] TAN C,JIN Z,ZHANG M,et al.An approach to the present-day three-dimensional (3D) stress field and its application in hydrocarbon migration and accumulation in the Zhangqiang depression,Liaohe field,China[J].Marine & Petroleum Geology,2001,18(9):983-994.
    [3] KHAIR H A,COOKE D,HAND M.The effect of present day in situ stresses and paleo-stresses on locating sweet spots in unconventional reservoirs,a case study from Moomba-Big Lake fields,Cooper basin,South Australia[J].Journal of Petroleum Exploration & Production Technology,2013,3(4):1-15.
    [4] ZHAO J,HEFNY A M,ZHOU Y X.Hydrofracturing in situ stress measurements in Singapore granite[J].International Journal of Rock Mechanics & Mining Sciences,2005,42(4):577-583.
    [5] WANG X.Geological conditions and key rock mechanics issues in the Western Route of South-to-North Water Transfer Project[J].Journal of Rock Mechanics and Geotechnical Engineering,2011,3(3):234-243.
    [6] 周文,闫长辉,王世泽.油气藏现今地应力场评价方法及应用[M].北京:地质出版社,2007:123-155.ZHOU Wen.Evaluation method of present crustal stress field in oil and gas reservoir and its application[M].Beijing:Geological Publishing House,2007:123-155.
    [7] WANG S,MA M,DING W,et al.Approximate Analytical-Pressure Studies on Dual-Porosity Reservoirs With Stress-Sensitive Permeability[J].Spe Reservoir Evaluation & Engineering,2015,18(4):1-15.
    [8] 李传亮,朱苏阳,王凤兰,等.关于储集层敏感性评价的若干问题[J].新疆石油地质,2017,38(4):488-491.LI Chuanliang,ZHU Suyang,WANG Fenglan,et al.Some Topics about Reservoir Sensitivity Evaluation[J].Xinjiang Petroleum Geology,2017,38(4):488-491.
    [9] 董长银,张清华,崔明月,等.复杂条件下疏松砂岩油藏动态出砂预测研究[J].石油钻探技术,2015,43(6):81-86.DONG Changyin,ZHANG Qinghua,CUI Mingyue,et al.A Dynamic Sanding Prediction Model Reservoirs with Complicated for Unconsolidated Sandstone Production Conditions[J].Petroleum Drilling Techniques,2015,43(6):81-86.
    [10] DARVISH H,NOURI-TALEGHANI M,SHOKROLLAHI A,et al.Geo-mechanical modeling and selection of suitable layer for hydraulic fracturing operation in an oil reservoir (south west of Iran)[J].Journal of African Earth Sciences,2015,111:409-420.
    [11] RAJABI M,TINGAY M,HEIDBACH O.The present-day state of tectonic stress in the Darling basin,Australia:Implications for exploration and production[J].Marine & Petroleum Geology,2016,77:776-790.
    [12] TAO N,WANG G,XIAO C,et al.The in situ stress determination from borehole image logs in the Kuqa Depression[J].Journal of Natural Gas Science & Engineering,2016,34:1077-1084.
    [13] HE S,WANG W,SHEN H,et al.Factors influencing wellbore stability during underbalanced drilling of horizontal wells:When fluid seepage is considered[J].Journal of Natural Gas Science & Engineering,2015,23:80-89.
    [14] 徐珂,戴俊生,冯建伟,等.南堡凹陷高深北区三维非均质应力场精细预测[J/OL].中国矿业大学学报,2018(6):1-11[2018-09-18].https://doi.org/10.13247/j.cnki.jcumt.000869.XU Ke,DAI Junsheng,FENG Jianwei,et al.Prediction of 3D heterogeneous in-situ stress field of Northern area in Gaoshen,Nanpu sag,Bohai Bay Basin,China[J/OL].Journal of China University of Minim & Technology,2018(6):1-11[2018-09-18].https://doi.org/10.13247/j.cnki.jcumt.000869.
    [15] YIN S,DING W,ZHOU W,et al.In situ stress field evaluation of deep marine tight sandstone oil reservoir:A case study of Silurian strata in northern Tazhong area,Tarim Basin,NW China[J].Marine & Petroleum Geology,2017,80:49-69.
    [16] 姜华,王建波,张磊,等.南堡凹陷西南庄断层分段活动性及其对沉积的控制作用[J].沉积学报,2010,28(6):1047-1053.JIANG Hua,WANG Jianbo,ZHANG Lei,et al.Segment activity of Xi’nanzhuang fault in Nanpu sag and its controlling on sedimentary process[J].Acta Sedimentologica Sinica,2010,28(6):1047-1053.
    [17] 郑红菊,董月霞,王旭东,等.渤海湾盆地南堡富油气凹陷烃源岩的形成及其特征[J].天然气地球科学,2007,18(1):78-83.ZHENG Hongju,DONG Yuexia,WANG Xudong,et al.The generation and characteristics of source rocks in nanpu oil-rich depression,Bohai Bay basin[J].Natural Gas Geoscience,2007,18(1):78-83.
    [18] 柳波,贾梦成,吕延防,等.南堡凹陷不同相态天然气成因联系及勘探意义[J].中国矿业大学学报,2016,45(1):87-95.LIU Bo,JIA Mengcheng,LV Yanfang,et al.Genesis connections among different phase states of natural gas in Nanpu sag and their exploration significance[J].Journal of China University of Minim & Technology,2016,45(1):87-95.
    [19] ZANG A,STEPHANSSON O.Stress Field of the Earth’s Crust[M].Berlin:Springer Netherlands,2010:131-191.
    [20] ZOBACK M D.Reservoir geomechanics[M].Cambridge:Cambridge University Press,2007:206-265.
    [21] BROOKE-BARNETT S,FLOTTMANN T,PAUL P K,et al.Influence of basement structures on in situ stresses over theSurat Basin,southeast Queensland[J].Journal of Geophysical Research Solid Earth,2015,120(7):4946-4965.
    [22] BELL J S.Petro geoscience 2.In situ stresses in sedimentary rocks (part 2):Applications of stress measurements [J].Geoscience Canada,1996,23(3):135-153.
    [23] BROWN E T,HOEK E.Trends in relationships between measured in-situ stresses and depth[J].International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1978,15(4):211-215.
    [24] 岩石力学特性与地应力特征研究:复杂断块低渗油藏现今地应力特征研究[R].唐山:中国石油冀东油田公司,2018:124-136.Study on characteristics of rock mechanics and characteristics of in-situ stress -- Characteristics of in-situ stress in complex fault block low permeability reservoirs [R].Tangshan:Jidong Oilfield Company,2018:124-136.
    [25] 李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版社,1997:42-88.LI Zhiming,ZHANG Jinzhu.In-situ stress and exploration and development of oil and gas[M].Beijing:Petroleum Industry Press,1997:42-88.
    [26] 孟召平,尹可,章朋.基于断层摩擦强度的地应力计算模型与应用[J].煤炭科学技术,2018,46(6):24-28.MENG Zhaoping,YIN Ke,ZHANG Peng.Calculation model of in-situ stress based on fault frictional strength and its application[J].Coal Science and Technology,2018,46(6):24-28.
    [27] 徐素国,梁卫国,莫江,等.软弱泥岩夹层对层状盐岩体力学特性影响研究[J].地下空间与工程学报,2009(5):878-883.XU Suguo,LIANG Weiguo,MO Jiang,et al.Influence of weak mudstone intercalated layer on mechanical properties of laminated salt rock[J].Chinese Journal of Underground Space and Engineering,2009,5(5):878-883.
    [28] 苏生瑞.断裂构造对地应力场的影响及其工程意义[D].成都:成都理工学院,2001:18-33.SU Shengrui.Effect of fractures on rock stresses and its significance in geological engineering [D].Chengdu:Chengdu University of Technology,2001:18-33.
    [29] 薛志鹏.断层活化导致井巷破坏的数值模拟分析[D].焦作:河南理工大学,2010:1-5.XUE Zhipeng.Simulation of roadway damage induced by fault reactivation[D].Jiaozuo:Henan Polytechnic University,2010:1-5.
    [30] HUDSON J A,COOLING C M.In Situ,rock stresses and their measurement in the U.K.:Part I.The current state of knowledge[J].International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1988,25(6):363-370.
    [31] 赵毅鑫,卢志国,朱广沛,等.考虑主应力偏转的采动诱发断层活化机理研究[J].中国矿业大学学报,2018(1):73-80.ZHAO Yixin,LU Zhiguo,ZHU Guangpei,et al.Fault reactive induced by the principal stress rotation for the underground coal mining[J].Journal ofChina University of Mining & Technology,2018(1):73-80.
    [32] 陈伟,吴智平,侯峰,等.断裂带内部结构特征及其与油气运聚关系[J].石油学报,2010,31(5):774-780.CHEN Wei,WU Zhiping,HOU Feng,et al.Internal structures of fault zones and their relationship with hydrocarbon migration and accumulation [J].Acta Petrolei Sinica,2010,31(5):774-780.
    [33] 刘中春,吕心瑞,李玉坤,等.断层对地应力场方向的影响机理[J].石油与天然气地质,2016,37(3):387-393.LIU Zhongchun,LV Xinrui,LI Yukun,et al.Mechanism of faults acting on in-situ stress field direction[J].Oil and Gas Geology,2016,37(3):387-393.
    [34] 周青春.温度、孔隙水和应力作用下砂岩的力学特性研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2006:28-56.ZHOU Qingchun.Study on the mechanical property of a sandstone under geothermal-mechanical and hydraulic-mechanical coupling[D].Wuhan:Graduate University of Chinese Academy of Sciences (Wuhan Institute of rock and soil mechanics),2006:28-56.
    [35] 孙金,邓金根,蔚宝华,等.注水开发油藏温度对地应力的影响研究[J].中国海上油气,2016,28(4):100-106.SUN Jin,DENG Jingen,WEI Baohua,et al.Effect of reservoir temperature on in-situ stresses during water injection development[J].China Offshore Oil and Gas,2016,28(4):100-106.
    [36] 董光,邓金根,朱海燕,等.重复压裂前的地应力场分析[J].断块油气田,2012,19(4):485-488.DONG Guang,DENG Jinyin,ZHU Haiyan,et al.Analysis of stress field before refracture treatment[J].Fault-Block Oil and Gas Field,2012,19(4):485-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700