用户名: 密码: 验证码:
CF8611/AC531复合材料性能及与7B04铝合金电偶腐蚀的电化学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemical study on performance of CF8611/ AC531 composite and galvanic corrosion coupled with 7B04 aluminum alloy
  • 作者:陈跃良 ; 王安东 ; 卞贵学 ; 张勇
  • 英文作者:CHEN Yue-liang;WANG An-dong;BIAN Gui-xue;ZHANG Yong;Naval Aviation University Qingdao Campus;
  • 关键词:复合材料 ; 铝合金 ; 性能 ; 电偶腐蚀 ; 电化学
  • 英文关键词:composite;;aluminum alloy;;performance;;galvanic corrosion;;electrochemistry
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:海军航空大学青岛校区;
  • 出版日期:2019-01-11 11:00
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.428
  • 基金:国家自然科学基金项目(51075394)
  • 语种:中文;
  • 页:CLGC201901015
  • 页数:9
  • CN:01
  • ISSN:11-1800/TB
  • 分类号:101-109
摘要
借助电化学工作站、扫描电镜和能谱仪等设备,测量了CF8611/AC531复合材料的正面(FS)试件和侧面(SS)试件及7B04-T74铝合金在3.5%(质量分数,下同)NaCl或3.5%NaCl+12.5%Cu_2SO_4电解液中的极化曲线及电偶腐蚀参量,并观测了微观形貌;基于电化学理论、稳态腐蚀场和参数化扫描,建立了复合材料磨损状态下二者的电偶腐蚀动态模型。结果表明:该型复合材料性能稳定,但原始表面存在碳纤维裸露缺陷,缺陷位置常在碳纤维束重叠区,密度均值4.3个/mm~2,面积均值0.0184mm~2/个;阴极反应速率与缺陷面积密切相关,据此划分了活性阴极区和惰性阴极区;电偶腐蚀中,铝合金的主要腐蚀形式为点蚀,未见复合材料失效;电偶腐蚀有限元模型有效、可用,总电偶电流I_g与缺陷面积S正线性相关;当S_(FS)∶S_(SS)约为5.53∶1时,二者对7B04-T74铝合金的电偶效应相同。
        By means of the electrochemical workstation, scanning electron microscope, energy spectrometer and so on, the polarization curves and galvanic corrosion parameters of the front surface(FS) specimen and side surface(SS) specimen of CF8611/AC531 composite and the 7 B04-T74 aluminum alloy in the electrolyte of 3.5%(mass fraction, the same below) NaCl or 3.5%NaCl+12.5% Cu_2SO_4 were measured, meanwhile the microstructure were observed. Based on the electrochemistry theory, steady corrosion field and parametric scanning technology, a dynamic model for galvanic corrosion under the wear status of composite was established. The results show that the performance of this composite is stable, but there are some carbon fibre exposed defects on the original surface. The defects are often located at the overlap area of carbon fibre bundles. There are 4.3 defects per square millimetre and the average area of each defect is 0.0184 mm~2; the cathodic reaction rate is closely related to the area of the defects and consequently its surface is divided into the active and the inert cathode region; in the galvanic corrosion the main corrosion form of the aluminum alloy is pitting and no failure is found in the composite. The galvanic corrosion model established here is valid and available. There is a positive linear correlation between the total galvanic current I_g and the defect area S; the galvanic effect of FS and SS on the aluminum alloy is the same when S_(FS)∶S_(SS) is about 5.53∶1.
引文
[1] ALIAS M N, BROWN R. Corrosion behavior of carbon fiber composites in the marine environment[J]. Corrosion Science, 1993, 35(4): 395-402.
    [2] IRELAND R, ARRONCHE L, LA SAPONARA V. Electrochemical investigation of galvanic corrosion between aluminum 7075 and multiscale glass fiber/epoxy composites[J]. Composites Part B: Engineering, 2012, 56(5):171-178.
    [3] 邓华, 高军鹏, 包建文. 取向非连续碳纤维复合材料制备与性能[J]. 航空材料学报, 2018, 38(1):69-74. DENG H, GAO J P, BAO J W. Preparation and mechanical properties of aligned discontinuous carbon fiber composites[J]. Journal of Aeronautical Materials, 2018, 38(1):69-74.
    [4] PAN J Q, LI P Y. Experimental study on galvanic corrosion of aluminum alloy and carbon/epoxy composite [J]. Aerospace Materials Technology, 1993, 33(5):19-24.
    [5] LU F, ZHONG Q P, CAO C X. Galvanic corrosion and controlling of GECM and metals in atmospheric environment[J]. Materials Protection, 2002, 35(12):19-22.
    [6] SRINIVASAN R, NELSON J A, HIHARA L H. Development of guidelines to attenuate galvanic corrosion between mechanically-coupled aluminum and carbon-fiber reinforced epoxy composites using insulation layers[J]. Journal of the Electrochemical Society, 2015, 162(10):545-554.
    [7] SRINIVASAN R, HIHARA L H. Utilization of hydrophobic coatings on insulative skirts to attenuate galvanic corrosion between mechanically-fastened aluminum alloy and carbon-fiber reinforced polymer-matrix composites[J]. Electrochemistry Communications, 2016, 72(5): 96-99.
    [8] 陈龙. 碳纤维复合材料与金属电偶腐蚀规律及防护研究[D]. 哈尔滨:哈尔滨工业大学, 2007. CHEN L. The research of galvanic corrosion rule and protection between carbon fiber composite material and metal[D]. Harbin:Harbin Institute of Technology, 2007.
    [9] HIHARA L H, LATANISION R M. Suppressing galvanic corrosion in graphite/aluminum metal-matrix composites[J]. Corrosion Science, 1993, 34(4):655-665.
    [10] LI Z H, XIONG B Q, ZHANG Y A, et al. Microstructural evolution of aluminum alloy 7B04 thick plate by various thermal treatments[J]. Chinese Journal of Nonferrous Metals, 2008, 18(1):40-45.
    [11] CHEN Y L, WANG Z F, BIAN G X, et al. Study on equivalent conversion of galvanic corrosion between dissimilar metals of airplane in NaCl solution with different concentrations[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):260-268.
    [12] YIN L, JIN Y, LEYGRAF C, et al. Numerical simulation of micro-galvanic corrosion in al alloys: effect of geometric factors[J]. Journal of the Electrochemical Society, 2017, 164(2): 75-84.
    [13] JIA J X, ATRENS A, SONG G, et al. Simulation of galvanic corrosion of magnesium coupled to a steel fastener in NaCl solution[J]. Materials and Corrosion, 2005, 56(7): 468-474.
    [14] JIA J X, SONG G, ATRENS A. Influence of geometry on galvanic corrosion of AZ91D coupled to steel[J]. Corrosion Science, 2006, 48(8): 2133-2153.
    [15] 王晨光, 陈跃良, 张勇,等. 表面涂层破损对7B04铝合金点蚀的影响及仿真研究[J]. 航空材料学报, 2016, 36(6):48-53. WANG C G, CHEN Y L, ZHANG Y, et al. Influence and simulation study of surface coating damage on pitting corrosion of 7B04 aluminum alloy[J]. Journal of Aeronautical Materials, 2016, 36(6):48-53.
    [16] 王晨光, 陈跃良, 张勇,等. 7B04铝合金在模拟海洋大气环境下的腐蚀行为[J]. 航空材料学报, 2017, 37(1):59-64. WANG C G, CHEN Y L, ZHANG Y, et al. Corrosion behavior of 7B04 aluminum alloy under simulated marine atmosphere environment[J]. Journal of Aeronautical Materials, 2017,37(1):59-64.
    [17] 王询, 林建平, 万海浪. 铝合金表面特性对其胶接性能影响的研究进展[J]. 材料工程, 2017, 45(8):123-131. WANG X, LIN J P, WAN H L. Research progress in effect of aluminum surface properties on adhesively bonded performance[J]. Journal of Materials Engineering, 2017, 45(8):123-131.
    [18] MANDEL M, KRüGER L. Determination of pitting sensitivity of the aluminium alloy EN AW-6060-T6 in a carbon-fiber reinforced plastic/aluminium rivet joint by finite element simulation of the galvanic corrosion process[J]. Corrosion Science, 2013, 73(21): 172-180.
    [19] WANG C G, CHEN Y L, ZHANG Y, et al. Simulation study on filiform corrosion of aircraft aluminum alloy/coating system[J]. Material Development and Application, 2017, 31(1):80-88.
    [20] 刘铭, 李惠曲, 陈军洲,等. 航空用7475-T7351铝合金厚板耐腐蚀性能[J]. 材料工程, 2017, 45(9):129-135. LIU M, LI H Q, CHEN J Z, et al. Corrosion resistance of 7475-T7351 aluminum alloy plate for aviation [J]. Journal of Materials Engineering, 2017, 45(9):129-135.
    [21] UDONATUS, GETHOMPSON, JAOMOTOYINBO, et al. Corrosion pathways in aluminium alloys[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1):55-62.
    [22] MA Y, LI L B, GAO G X, et al. Effect of montmorillonite on the ionic conductivity and electrochemical properties of a composite solid polymer electrolyte based on polyvinylidenedifluoride/polyvinyl alcohol matrix for lithium ion batteries[J]. Electrochimica Acta, 2016, 187(4):535-542.
    [23] YANG S H B, BABU P, CHUA S F S, et al. Carbon dioxide hydrate kinetics in porous media with and without salts[J]. Applied Energy, 2016, 162(5):1131-1140.
    [24] BALA H, DYMEK M. Determination of corrosion rate of porous, liquid permeable materials on the example of hydride powder composite[J]. Ochrona Przed Korozja, 2017, 6(4): 79-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700