用户名: 密码: 验证码:
丙烷与二氧化碳耦合制丙烯的热力学模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermodynamic simulation of propane coupling with carbon dioxide to propylene
  • 作者:田海锋 ; 廖建康 ; 查飞 ; 郭效军 ; 张建斌
  • 英文作者:TIAN Hai-feng;LIAO Jian-kang;ZHA Fei;GUO Xiao-jun;ZHANG Jian-bin;College of Chemistry and Chemical Engineering,Northwest Normal University;School of Chemical Engineering and Technology,Tianshui Normal University;
  • 关键词:丙烷 ; 二氧化碳 ; 丙烯 ; 耦合反应 ; 热力学
  • 英文关键词:propane;;carbon dioxide;;propylene;;coupling reaction;;thermodynamic
  • 中文刊名:XBSF
  • 英文刊名:Journal of Northwest Normal University(Natural Science)
  • 机构:西北师范大学化学化工学院;天水师范学院化学工程与技术学院;
  • 出版日期:2019-03-15
  • 出版单位:西北师范大学学报(自然科学版)
  • 年:2019
  • 期:v.55;No.205
  • 基金:西北师范大学青年教师提升计划资助项目(NWNU-LKQN-18-21)
  • 语种:中文;
  • 页:XBSF201902016
  • 页数:7
  • CN:02
  • ISSN:62-1087/N
  • 分类号:98-103+111
摘要
采用HSC Chemistry 6.0热力学计算软件对丙烷与二氧化碳耦合制丙烯体系的热力学行为进行了模拟,得到了主副反应在标准大气压、温度400~1 000 K时的焓变、熵变、吉布斯自由能和平衡常数,并考察了C_3H_8和CO_2的摩尔比以及反应温度对丙烷与二氧化碳耦合制丙烯的影响.模拟结果表明,C_3H_8与CO_2的耦合反应主要由丙烷脱氢反应决定,常压条件下,当C_3H_8和CO_2的摩尔比大于3,反应温度不低于800 K时,丙烯的产率达到30.0%以上.
        The thermodynamics behavior of propane coupling with carbon dioxide to propylene is simulated by the thermodynamic software of HSC Chemistry 6.0.The enthalpy change,entropy change,Gibbs free energy change and thermodynamic equilibrium constant of main and side reactions are obtained at atmospheric pressure and temperature ranged from 400 to 1000 K.The effects of reaction temperature and molar ratio of C_3H_8 to CO_2 on the coupling of propane with carbon dioxide to propylene are investigated.Under normal pressure,the simulation results show that the coupling reaction of C_3H_8 with CO_2 is mainly determined by the dehydrogenation of propane and the yield of propylene is more than 30.0%,when the molar ratio of C_3H_8 to CO_2 is more than 3 and the reaction temperature is not lower than 800 K.
引文
[1]PUTRA M D,ZAHRANI S M,ABASAEED A E.Effect of Sr loading on oxydehydrogenation of propane to propylene over Al2O3-supported V-Mo catalysts[J].Journal of Energy Chemistry,2013,22(5):778.
    [2]杨亮亮.丙烯市场2016年回顾及2017年展望[J].当代石油石化,2017,25(6):19.
    [3]KORZY N′SKI M D,DINCA M.Oxdative dehydrogenation of propane in the realm of metalorganic frameworks[J].ACS Central Science,2017,3(1):10.
    [4]王欣.丙烷脱氢技术前景展望[J].中国化工贸易,2015(34):21.
    [5]RODEMERCK U,STOYANOVA M,KONDRATENKO E V,et al.Influence of the kind of VOx structures in VOx/MCM-41 on activity,selectivity and stability in dehydrogenation of propane and isobutane[J].Journal of Catalysis,2017,352:256.
    [6]韩伟,潘相米,吴砚会,等.多级孔ZSM-5分子筛的制备及其丙烷脱氢制丙烯的催化性能[J].工业催化,2017,25(10):47.
    [7]HAN Z F,XUE X L,WU J M,et al.Preparation and catalytic properties of mesoporous nV-MCM-41for propane oxidative dehydrogenation in the presence of CO2[J].Chinese Journal of Catalysis,2018,39(6):1099.
    [8]GOMEZ E,KATTEL S,YAN B,et al.Combining CO2 reduction with propane oxidative dehydrogenation over bimetallic catalysts[J].Nature Communications,2018,9(1):1398.
    [9]杨英,彭蓉,肖立桢.丙烷脱氢制丙烯工艺及其经济性分析[J].石油化工技术与经济,2014,30(3):6.
    [10]尤廷秀,由宏君.丙烷脱氢氧化制丙烯反应动力学研究进展[J].天然气化工,2004,29(6):52.
    [11]李思漩,张惠民,夏蕾,等.丙烷脱氢制丙烯催化剂研究进展[J].现代化工,2018,38(2):15.
    [12]林少波,单玉领,隋志军,等.氧对丙烷脱氢反应体系影响的热力学分析[J].化工进展,2015,34(4):970.
    [13]KONDRATENKO E V,BAERNS M.Catalytic oxidative dehydrogenation of propane in the presence of O2 and N2O-the role of vanadia distribution and oxidant activation[J].Applied Catalysis A:General,2001,222(1):142.
    [14]KONDRATENKO E V,CHERIAN M,BAERNSM,et al.Oxidative dehydrogenation of propane over V/MCM-41catalysts:comparison of O2and N2O as oxidants[J].Journal of Catalysis,2005,234(1):141.
    [15]祝贺,汪丹峰,陈倩倩,等.二氧化碳加氢制甲醇过程热力学分析[J].天然气化工:C1化学与化工,2015,40(3):21.
    [16]GAIKWAD R,BANSODE A,URAKAWA A.High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol[J].Journal of Catalysis,2016,343:127.
    [17]MATEJ H,DASIREDDY V D B C,TEFAN CˇI CˇN S,et al.Mechanism,kinetics and thermodynamics of carbon dioxide hydrogenation to methanol on Cu/ZnAl2O4 spinel-type heterogeneous catalysts[J].Applied Catalysis B:Environmental,2017,207:268.
    [18]LIU Q,YANG X,LI L,et al.Direct catalytic hydrogenation of CO2to formate over a Schiff-basemediated gold nanocatalyst[J].Nature Communications,2017,8(1):1407.
    [19]ZARGARI N,JUNG E,LEE J H,et al.Carbon dioxide hydrogenation:efficient catalysis by an NHC-amidate Pd(Ⅱ)complex[J].Tetrahedron Letters,2017,58(33):3331.
    [20]李静,邓廷云,杨林,等.CO2吸附活化及催化加氢制低碳烯烃的研究进展[J].化工进展,2013,32(2):341.
    [21]CHEN M,XU J,CAO Y,et al.Dehydrogenation of propane over IN2O3-Al2O3 mixed oxide in the presence of carbon dioxide[J].Journal of Catalysis,2010,272(1):108.
    [22]上官荣昌,葛欣,王健锋,等.二氧化碳氧化丙烷制丙烯的热力学分析[J].石油与天然气化工,2002,31(1):7.
    [23]陈思艮,祝琳华,何艳萍,等.钒基催化剂上丙烷氧化脱氢催化性能研究进展[J].材料导报,2016,30(7):79.
    [24]ATANGA M A,REZAEI F,JAWAD A,et al.Oxidative dehydrogenation of propane to propylene with carbon dioxide[J].Applied Catalysis B:Environmental,2018,220:433.
    [25]葛欣,沈俭一.丙烷脱氢与逆水煤气变换耦合制丙烯反应的研究进展[J].天然气化工,2001,26(3):37.
    [26]方奕文,沈尾彬,黄晓昌,等.二甲醚选择性转化制芳烃的热力学分析[J].湖南师范大学自然科学学报,2009,32(3):70.
    [27]吴文章,郭文瑶,肖文德,等.甲醇制丙烯反应的热力学研究[J].石油化工,2011,40(5):500.
    [28]叶敏,李贤.丙烷脱氢氧化制丙烯热力学分析[J].化学工业与工程技术,2011,32(6):18.
    [29]MICHORCZYK P,ZEC′CZAK K,NIEKURZAKR,et al.Dehydrogenation of propane with CO2-a new green process for propene and synthesis gas production[J].Polish Journal of Chemical Technology,2012,14(4):77.
    [30]王艳坤.HSC Chemistry软件在高校化学科研中的应用[J].河南教育学院学报(自然科学版),2013,22(2):28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700