用户名: 密码: 验证码:
江淮梅雨期极端对流微物理特征的双偏振雷达观测研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microphysical characteristics of extreme convective precipitation over the Yangtze-Huaihe river basin during the Meiyu season based on polarimetric radar data
  • 作者:杨忠林 ; 赵坤 ; 徐坤 ; 李凯 ; 陈刚 ; 温龙 ; 刘溯 ; 杨正玮
  • 英文作者:YANG Zhonglin;ZHAO Kun;XU Kun;LI Kai;CHEN Gang;WEN Long;LIU Su;YANG Zhengwei;Key Laboratory for Mesoscale Severe Weather/MOE and School of Atmospheric Science,Nanjing University;CSIC PRIDe (Nanjing)Atmospheric and Oceanic Information System Co.Ltd;Xichang Satellite Launch Center;
  • 关键词:梅雨 ; 极端对流 ; 微物理特征 ; 双偏振雷达
  • 英文关键词:Meiyu;;Extreme convection;;Microphysical characteristics;;Polarimetric radar
  • 中文刊名:QXXB
  • 英文刊名:Acta Meteorologica Sinica
  • 机构:中尺度灾害性天气教育部重点实验室南京大学大气科学学院;中船重工鹏力(南京)大气海洋信息系统有限公司;西昌卫星发射中心;
  • 出版日期:2019-02-15
  • 出版单位:气象学报
  • 年:2019
  • 期:v.77
  • 基金:国家重点基础研究发展计划(973)项目(2013CB430101);; 国家重点研发计划项目(2017YFC1501703);; 国家自然科学基金项目(41322032、41275031)
  • 语种:中文;
  • 页:QXXB201901005
  • 页数:15
  • CN:01
  • ISSN:11-2006/P
  • 分类号:60-74
摘要
为研究梅雨期极端对流系统的微物理特征,利用2013—2014年江淮梅雨期间南京溧水S波段双偏振雷达探测资料和地面自动站小时降水资料,统计分析了两类极端对流降水系统的微物理特征及差异。这两类极端对流系统的定义基于地面降水强度和雷达回波顶高,分别为所有对流中降水强度最强的1%(R类:小时降水强度>46.2 mm/h)和对流发展高度最高的1%(H类:20 dBz回波顶高>14.5 km)。结果显示这两类极端对流系统仅有30%的样本重合,显示了二者之间的弱相关性。对于相同的反射率因子Z_H,R类极端对流系统的近地面差分反射率因子Z_(DR)通常较H类极端对流小约0.2 dB,表明R类极端对流具有较小的平均粒径。结合双偏振雷达反演的粒子大小和相态分布显示,虽然两类极端对流都表现出海洋性对流降水特征,但R类极端对流较H类极端对流的总体雨滴粒径更小而数浓度更高,导致R类极端对流系统的地面降水更强。与R类极端对流系统相比,H类极端对流系统的上升运动更强,将更多的水汽和过冷水输送到0℃层以上,有利于形成更大的冰相粒子(如霰粒子等),并通过融化形成大雨滴。以上研究表明,梅雨期降水强度和对流发展深度并没有必然的联系,极端降水主要是中等高度的对流引起。
        The S-band polarimetric radar data and hourly rain gauge data during the Meiyu seasons of 2013 and 2014 were used to examine the microphysical characteristics of extreme convective precipitation over the Yangtze-Huaihe river basin. Two types of extreme convective precipitation features(PFs) are identified based on the top 1% rainfall rate(top-R) and the top 1% 20 dBz echo top height(top-H). Result shows that only ~30% of the samples are overlapped between these two types of PFs, which indicates a weak linkage between them. Microphysical differences between the top-R(characterized by R>46.2 mm/h in this study) and the top-H(H>14.5 km) are further analyzed. For the same Z_H near the ground, Z_(DR) values in top-R are always ~0.2 dB lower than that in top-H, indicating the former contains relatively smaller size. Combination of the drop size distribution(DSD) retrieval and hydrometeor classification results shows that both types of precipitation systems possess characteristics of maritime convection. However, top-R(top-H) PFs contain smaller(larger) raindrops with higher(lower) number concentration of raindrops, resulting in more(less) intense rainfall. On the other hand, the reflectivity of top-H PFs reaches higher altitude with stronger vertical velocity, resulting in more water vapor and super-cooled liquid water being transported aloft. Ice particles can grow larger(e.g., graupel and hail) and then melt into larger raindrops. This study shows that there is a weak correlation between the rainfall intensity and the depth of convection while the extreme rainfall is usually accompanied by moderate convection during the Meiyu season.
引文
丁一汇, 柳俊杰, 孙颖等. 2007. 东亚梅雨系统的天气-气候学研究. 大气科学, 31(6): 1082-1101. Ding Y H, Liu J J, Sun Y, et al. 2007. A study of the synoptic-climatology of the meiyu system in East Asia. Chinese J Atmos Sci, 31(6): 1082-1101 (in Chinese)
    汪会. 2014. 华南和江淮地区夏季风期间降水和对流的一些统计特征和个例研究[D]. 北京: 中国科学院大学. Wang H. 2014. Some statistical characteristics and case study of rainfall and convection over South China and Yangtze-Huai River Basin during summer monsoon period[D]. Beijing: University of Chinese Academy of Sciences (in Chinese)
    王润, 姜彤, 高俊峰等. 1999. 1998年长江流域洪水灾害成因分析. 自然灾害学报, 8(1): 16-20. Wang R, Jiang T, Gao J F, et al. 1999. 1998 Yangtze River flood: Causes and analysis. J Nat Dis, 8(1): 16-20 (in Chinese)
    吴学珂, 郄秀书, 袁铁. 2013. 亚洲季风区深对流系统的区域分布和日变化特征. 中国科学: 地球科学, 43(4): 556-569. Wu X K, Qie X S, Yuan T. 2013. Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Sci China: Earth Sci, 56(5): 843-854
    张小玲, 林建, 张涛等. 2015. 2013年暖季试验概述. 气象, 41(5): 521-532. Zhang X L, Lin J, Zhang T, et al. 2015. Overview of the warm-season experiment in 2013. Meteor Mon, 41(5): 521-532 (in Chinese)
    朱格利, 林万涛, 曹艳华. 2014. 用WRF模式中不同云微物理参数化方案对华南一次暴雨过程的数值模拟和性能分析. 大气科学, 38(3): 513-523. Zhu G L, Lin W T, Cao Y H. 2014. Numerical simulation of a rainstorm event over South China by using various cloud microphysics parameterization schemes in WRF model and its performance analysis. Chinese J Atmos Sci, 38(3): 513-523 (in Chinese)
    Barnes H C, Houze Jr R A. 2016. Comparison of observed and simulated spatial patterns of ice microphysical processes in tropical oceanic mesoscale convective systems. J Geophys Res Atmos, 121(14): 8269-8296
    Brandes E A, Zhang G F, Vivekanandan J. 2003. An evaluation of a drop distribution-based polarimetric radar rainfall estimator. J Appl Meteor, 42(5): 652-660
    Bringi V N, Chandrasekar V. 2001. Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge: Cambridge University Press, 636pp
    Cao Q, Zhang G F, Brandes E, et al. 2008. Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J Appl Meteor Climatol, 47(8): 2238-2255
    Chang W Y, Lee W C, Liou Y C. 2015. The kinematic and microphysical characteristics and associated precipitation efficiency of subtropical convection during SoWMEX/TiMREX. Mon Wea Rev, 143(1): 317-340
    Chen B J, Yang J, Pu J P. 2013. Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J Meteor Soc Japan, 91(2): 215-227
    Chen G, Zhao K, Zhang G F, et al. 2017. Improving polarimetric C-band radar rainfall estimation with two-dimensional video disdrometer observations in Eastern China. J Hydrometeorol, 18(5): 1375-1391
    Chen X C, Zhao K, Xue M. 2014. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data. J Geophys Res Atmos, 119(22): 12447-12465
    Dolan B, Rutledge S A, Lim S, et al. 2013. A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J Appl Meteor Climatol, 52(9): 2162-2186
    Fu Y F, Liu G S. 2003. Precipitation characteristics in mid-latitude East Asia as observed by TRMM PR and TMI. J Meteor Soc Japan, 81(6): 1353-1369
    Giangrande S E, Ryzhkov A V. 2008. Estimation of rainfall based on the results of polarimetric echo classification. J Appl Meteor Climatol, 47(9): 2445-2462
    Hamada A, Murayama Y, Takayabu Y N. 2014. Regional characteristics of extreme rainfall extracted from TRMM PR measurements. J Climate, 27(21): 8151-8169
    Hamada A, Takayabu Y N, Liu C T, et al. 2015. Weak linkage between the heaviest rainfall and tallest storms. Nat Commun, 6: 6213
    Houze Jr R A, Wilton D C, Smull B F. 2007. Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart J Roy Meteor Soc, 133(627): 1389-1411
    Houze Jr R A, Rasmussen K L, Zuluaga M D, et al. 2015. The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev Geophys, 53(3): 994-1021
    Islam T, Rico-Ramirez M A, Thurai M, et al. 2012. Characteristics of raindrop spectra as normalized gamma distribution from a Joss-Waldvogel disdrometer. Atmos Res, 108: 57-73
    Kumjian, M R. 2013. Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J Operat Meteor, 1(19): 226-242
    Luo Y L, Wang H, Zhang R H, et al. 2013. Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai River Basin. J Climate, 26(1): 110-132
    Matrosov S Y, Clark K A, Kingsmill D E. 2007. A polarimetric radar approach to identify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. J Appl Meteor Climatol, 46(2): 154-166
    Nesbitt S W, Zipser E J, Cecil D J. 2000. A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J Climate, 13(23): 4087-4106
    Oue M, Uyeda H, Shusse Y. 2010. Two types of precipitation particle distribution in convective cells accompanying a Baiu frontal rainband around Okinawa Island, Japan. J Geophys Res Atmos, 115(D2): D02201
    Oue M, Uyeda H, Lee D I. 2011. Raindrop size distribution parameters estimated from polarimetric radar variables in convective cells around Okinawa Island during the Baiu period. Asia-Pac J Atmos Sci, 47(1): 33-44
    Park H S, Ryzhkov A V, Zrni, et al. 2009. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 24(3): 730-748
    Rasmussen K L, Houze Jr R A. 2011. Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon Wea Rev, 139(8): 2399-2420
    Romatschke U, Medina S, Houze Jr R A. 2010. Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J Climate, 23(2): 419-439
    Schuur T, Ryzhkov A, Heinselman P, et al. 2003. Observations and Classification of Echoes with the Polarimetric WSR-88D Radar. NOAA/NSSL Report, Norman, OK: NOAA
    Shusse Y, Nakagawa K, Takahashi N, et al. 2009. Characteristics of polarimetric radar variables in three types of rainfalls in a Baiu front event over the East China Sea. J Meteor Soc Japan, 87(5): 865-875
    Sohn B J, Ryu G H, Song H J, et al. 2013. Characteristic features of warm-type rain producing heavy rainfall over the Korean Peninsula inferred from TRMM measurements. Mon Wea Rev, 141(11): 3873-3888
    Song H J, Sohn B J. 2015. Two heavy rainfall types over the Korean Peninsula in the humid East Asian summer environment: A satellite observation study. Mon Wea Rev, 143(1): 363-382
    Steiner M, Houze Jr R A, Yuter S E. 1995. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J Appl Meteor, 34(9): 1978-2007
    Ulbrich C W. 1983. Natural variations in the analytical form of the raindrop size distribution. J Climate Appl Meteor, 22(10): 1764-1775
    Wang M J, Zhao K, Xue M, et al. 2016. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J Geophys Res Atmos, 121(20): 12415-12433
    Wen J, Zhao K, Huang H, et al. 2017. Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in eastern China. J Geophys Res Atmos, 122(15): 8033-8050
    Wen L, Zhao K, Zhang G F, et al. 2016. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data. J Geophys Res Atmos, 121(5): 2265-2282
    Xu W X, Zipser E J, Liu C T. 2009. Rainfall characteristics and convective properties of Mei-Yu precipitation systems over South China, Taiwan, and the South China Sea. Part Ⅰ: TRMM observations. Mon Wea Rev, 137(12): 4261-4275
    Xu W X, Zipser E J. 2012. Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes. Geophys Res Lett, 39(7): L07802
    Xu, W X, Zipser E J. 2015. Convective intensity, vertical precipitation structures, and microphysics of two contrasting convective regimes during the 2008 TiMREX. J Geophys Res Atmos, 120(9): 4000-4016
    Yokoyama C, Takayabu Y N, Kanada S. 2014. A contrast in precipitation characteristics across the Baiu front near Japan. Part Ⅰ: TRMM PR observation. J Climate, 27(15): 5872-5890
    Yuter S E, Houze Jr R A. 1995. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part Ⅱ: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon Wea Rev, 123(7): 1941-1963
    Zhang C Z, Uyeda H, Yamada H, et al. 2006. Characteristics of mesoscale convective systems over the east part of continental China during the Meiyu from 2001 to 2003. J Meteor Soc Japan, 84(4): 763-782
    Zhang G, Vivekanandan J, Brandes E. 2001. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans Geosci Remote Sens, 39(4): 830-841
    Zhang G F, Vivekanandan J, Brandes E A, et al. 2003. The shape-slope relation in observed gamma raindrop size distributions: Statistical error or useful information? J Atmos Oceanic Technol, 20(8): 1106-1119
    Zhang J, Wang S, Clarke B. 2004. WSR-88D reflectivity quality control using horizontal and vertical reflectivity structure//Proceedings of the 11th Conference on Aviation, Range and Aerospace Meteorology. Hyannis, MA: American Meteoroly Society, 5.4
    Zipser E J, Cecil D J, Liu C T, et al. 2006. Where are the most intense thunderstorms on Earth? Bull Amer Meteor Soc, 87(8): 1057-1072

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700