用户名: 密码: 验证码:
2016年梅雨期间长江中下游强降水与对流层上层斜压波包的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The relationship between heavy precipitation in the middle and lower reaches of Yangtze River and baroclinic wave packets in the upper troposphere during the Meiyu period of 2016
  • 作者:叶德超 ; 管兆勇 ; 孙思远 ; 李鑫 ; 夏阳
  • 英文作者:YE Dechao;GUAN Zhaoyong;SUN Siyuan;LI Xin;XIA Yang;Key Laboratory of Ministry of Education for Meteorological Disaster/Climate and Weather Disasters Collaborative Innovation Center, Nanjing University of Information Science and Technology;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences;Meteorological Bureau of Liupanshui;
  • 关键词:斜压波包 ; 梅雨强降水事件 ; 信息流 ; 长江中下游 ; 2016年
  • 英文关键词:Baroclinic wave packets;;Heavy rainfall events in Meiyu;;Information flow;;The middle and lower reaches of Yangtze River;;Year 2016
  • 中文刊名:QXXB
  • 英文刊名:Acta Meteorologica Sinica
  • 机构:南京信息工程大学气象灾害教育部重点实验室/气候与气象灾害协同创新中心;中国气象科学研究院灾害天气国家重点实验室;六盘水市气象局;
  • 出版日期:2019-02-15
  • 出版单位:气象学报
  • 年:2019
  • 期:v.77
  • 基金:公益性行业(气象)科研专项(GYHY20140624);; 灾害天气国家重点实验室课题(2015LASW-A03);; 江苏省PAPD项目
  • 语种:中文;
  • 页:QXXB201901006
  • 页数:11
  • CN:01
  • ISSN:11-2006/P
  • 分类号:75-85
摘要
2016年6—7月,长江中下游地区发生了自1998年以来最严重的强降水事件,造成了重大的经济损失。利用NCEP/NCAR再分析资料和中国2479站逐月及逐日降水资料,研究了2016年梅雨期间长江中下游地区降水与欧亚大陆对流层上层斜压波包活动的关系,并诊断了两者之间的信息流向。结果表明,梅雨期间的高频斜压波动具有明显的下游频散效应。波动起源于黑海,沿西北—东南方向于3—4 d后传至长江中下游地区。斜压波包为长江中下游地区强降水的发生提供了必要的能量。波作用通量矢量的分布表明,梅雨期间逐日均有来自西风带上游的扰动能量向长江中下游流域传播。而梅雨期间降水与斜压波包的信息流关系表明,二者之间存在信息传递。因此,3—4 d并源于黑海附近的斜压波包活动是2016年长江中下游梅雨期间异常降水的成因。这些结果为深刻认识长江中下游地区强降水事件发生的成因和有效预测提供了线索。
        During June and July of 2016, the most severest rainfall event since 1998 occurred in the middle and lower reaches of Yangtze River, causing huge economic losses there. Using the NECP/NCAR reanalysis data along with monthly and daily precipitation data collected at 2479 weather stations in China, the relationship between precipitation in the middle and lower reaches of Yangtze River and baroclinic wave packets in the upper troposphere over Eurasia is analyzed in the present study. The result demonstrates that high frequency baroclinic disturbances effectively dispersed wave energy downstream to East Asia during the Meiyu period. The disturbances originated in the Black sea, and then propagated southeastward to the middle and lower reaches of Yangtze River in 3-4 days. This wave energy propagation can be well represented by baroclinic wave packets. The wave-activity fluxes also show that disturbance energy dispersed southeastward from the westerlies in the mid-latitudes to the middle and lower reaches of Yangtze River during the Meiyu period. To further understand the relationship between the Rossby wave packets and severe precipitation in the middle and lower reaches of Yangtze River, we calculate the information flow, which shows that there indeed existed information flows between the baroclinic wave packets and precipitation changes in the middle and lower reaches of Yangtze River during the Meiyu period. These results provide clues to understanding and forecasting heavy rainfall events in the middle and lower reaches of Yangtze River.
引文
丁一汇, 柳俊杰, 孙颖等. 2007. 东亚梅雨系统的天气—气候学研究. 大气科学, 31(6): 1082-1101. Ding Y H, Liu J J, Sun Y, et al. 2007. A study of the synoptic-climatology of the Meiyu system in East Asia. Chinese J Atmos Sci, 31(6): 1082-1101 (in Chinese)
    侯俊, 管兆勇. 2013. 华东地区6—7月锋生的气候学特征及环流结构. 气象学报, 71(1): 1-22. Hou J, Guan Z Y. 2013. Climatic features of frontogenesis in East China and their related circulation patterns during the early summer. Acta Meteor Sinica, 71(1): 1-22 (in Chinese)
    李明刚, 管兆勇, 梅士龙. 2016. 夏季长江中下游地区降水持续性年(代)际变异及其与环流和Rossby波活动的联系. 大气科学, 40(6): 1199-1214. Li M G, Guan Z Y, Mei S L. 2016. Interannual and Interdecadal variations of summer rainfall duration over the middle and lower reaches of the Yangtze River in association with anomalous circulation and Rossby wave activities. Chinese J Atmos Sci, 40(6): 1199-1214 (in Chinese)
    梅士龙, 管兆勇. 2008. 对流层上层斜压波包活动与2003年江淮流域梅雨的关系. 大气科学, 32(6): 1333-1340. Mei S L, Guan Z Y. 2008. Activities of baroclinic wave packets in the upper troposphere related to Meiyu of 2003 in the Yangtze River-Huaihe River valley. Chinese J Atmos Sci, 32(6): 1333-1340 (in Chinese)
    梅士龙, 管兆勇. 2009. 1998年长江中下游梅雨期间对流层上层斜压波包的传播. 热带气象学报, 25(3): 300-306. Mei S L, Guan Z Y. 2009. Propagation of baroclinic wave packets in upper troposphere during the Meiyu period of 1998 over middle and lower reaches of Yangtze River valley. J Trop Meteor, 25(3): 300-306 (in Chinese)
    谭本馗, 潘旭辉. 2002. 1998年夏季北半球斜压波活动与长江流域洪涝灾害分析. 南京大学学报(自然科学), 38(3): 354-364. Tan B K, Pan X H. 2002. Baroclinic waves of northern hemisphere and Yangtze River flood in the summer of 1998. J Nanjing Univ (Nat Sci), 38(3): 354-364 (in Chinese)
    陶诗言, 卫捷, 张小玲. 2008. 2007年梅雨锋降水的大尺度特征分析. 气象, 34(4): 3-15. Tao S Y, Wei J, Zhang X L. 2008. Large-scale features of the Mei-Yu front associated with heavy rainfall in 2007. Meteor Mon, 34(4): 3-15 (in Chinese)
    陶诗言, 卫捷, 梁丰等. 2010. Rossby波的下游效应引发我国高影响天气的分析. 气象, 36(7): 81-93. Tao S Y, Wei J, Liang F, et al. 2010. Analysis of high impact weather induced by the downstream effect of Rossby waves. Meteor Mon, 36(7): 81-93 (in Chinese)
    汪名怀, 谭本馗. 2003. GCM模式中斜压波包的动力学特征. 北京大学学报(自然科学版), 39(1): 40-50. Wang M H, Tan B K. 2003. Characteristics of barolicnic wave packets in GCM data. Acta Sci Natur Univ Pekinensis, 39(1): 40-50 (in Chinese)
    于文勇, 李建, 宇如聪. 2012. 中国地区降水持续性的季节变化特征. 气象, 38(4): 392-401. Yu W Y, Li J, Yu R C. 2012. Analyses of seasonal variation characteristics of the rainfall duration over China. Meteor Mon, 38(4): 392-401 (in Chinese)
    Blackmon M L, Lee Y H, Wallace J M, et al. 1984. Time variation of 500 mb height fluctuations with long, intermediate and short time scales as deduced from lag-correlation statistics. J Atmos Sci, 41(6): 981-991
    Bosart L F, Moore B J, Cordeira J M, et al. 2017. Interactions of north Pacific tropical, midlatitude, and polar disturbances resulting in linked extreme weather events over North America in October 2007. Mon Wea Rev, 145(4): 1245-1273
    Brennan M J, Lackmann G M. 2005. The influence of incipient latent heat release on the precipitation distribution of the 24-25 January 2000 U.S. east coast cyclone. Mon Wea Rev, 133(7): 1913-1937
    Chang E K M. 1993. Downstream development of baroclinic waves as inferred from regression analysis. J Atmos Sci, 50(13): 2038-2053
    Chang E K M, Yu D B. 1999. Characteristics of wave packets in the upper troposphere. PartⅠ: Northern hemisphere winter. J Atmos Sci, 56(11): 1708-1728
    Chang E K M. 1999. Characteristics of wave packets in the upper troposphere. PartⅡ: seasonal and hemispheric variations. J Atmos Sci, 56(11): 1729-1747
    Chang E K M. 2001. The structure of baroclinic wave packets. J Atmos Sci, 58(13): 1694-1713
    Chang E K M. 2005. The impact of wave packets propagating across Asia on Pacific cyclone development. Mon Wea Rev, 133(7): 1998-2015
    Cressman G P. 1948. On the forecasting of long waves in the upper westerlies. J Atmos Sci, 5(2): 44-57
    Keller J H. 2017. Amplification of the downstream wave train during extratropical transition: Sensitivity studies. Mon Wea Rev, 145(4): 1529-1548
    Knippertz P, Martin J E. 2005. Tropical plumes and extreme precipitation in subtropical and tropical West Africa. Quart J Roy Meteor Soc, 131(610): 2337-2365
    Li M G, Guan Z Y, Jin D C, et al. 2016. Anomalous circulation patterns in association with two types of daily precipitation extremes over southeastern China during boreal summer. J Meteor Res, 30(2): 183-202
    Liang X S. 2014. Unraveling the cause-effect relation between time series. Phys Rev E Stat Nonlin Soft Matter Phys, 90(5): 052150
    Liang X S. 2015. Normalizing the causality between time series. Phys Rev E Stat Nonlin Soft Matter Phys, 92(2): 022126
    Martius O, Schwierz C, Davies H C. 2008. Far-upstream precursors of heavy precipitation events on the Alpine south-side. Quart J Roy Meteor Soc, 134(631): 417-428
    Souders M B, Colle B A, Chang E K M. 2014. The climatology and characteristics of Rossby wave packets using a feature-based tracking technique. Mon Wea Rev, 142(10): 3528-3548
    Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci, 58(6): 608-627
    Teubler F, Riemer M. 2016. Dynamics of Rossby wave packets in a quantitative potential vorticity-potential temperature framework. J Atmos Sci, 73(3): 1063-1081
    Torn R D, Hakim G J. 2015. Comparison of wave packets associated with extratropical transition and winter cyclones. Mon Wea Rev, 143(5): 1782-1803
    Wolf G, Wirth V. 2017. Diagnosing the horizontal propagation of Rossby wave packets along the midlatitude waveguide. Mon Wea Rev, 145(8): 3247-3264
    Yeh T C. 1949. On energy dispersion in the atmosphere. J Meteor, 6(1): 1-16
    Zimin A V, Szunyogh I, Patil D J, et al. 2003. Extracting envelopes of Rossby wave packets. Mon Wea Rev, 131(5): 1011-1017

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700