基于时间序列的星载微波成像仪无线电频率干扰识别方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Radio-frequency interference identification methods based on time series AMSR-2 observations
  • 作者:官莉 ; 张渝晨
  • 英文作者:GUAN Li;ZHANG Yu-chen;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,Nanjing University of Information Science and Technology;
  • 关键词:AMSR-2 ; 无线电频率干扰(RFI) ; 长时间序列 ; 识别算法
  • 英文关键词:Advanced Microwave Scanning Radiometer-2;;Radio Frequency Interference(RFI);;Long time series;;Recognition algorithm
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:南京信息工程大学气象灾害预报预警与评估协同创新中心中国气象局气溶胶与云降水重点开放实验室;
  • 出版日期:2018-10-24 10:46
  • 出版单位:地球物理学进展
  • 年:2019
  • 期:v.34;No.155
  • 基金:国家自然科学基金项目(41575029)资助
  • 语种:中文;
  • 页:DQWJ201903004
  • 页数:9
  • CN:03
  • ISSN:11-2982/P
  • 分类号:31-39
摘要
无线电频率干扰(Radio Frequency Interference,简称RFI)的识别对提高星载被动微波资料的利用率有重要作用.本文基于先进的微波扫描辐射计AMSR-2(Advanced Microwave Scanning Radiometer-2)2016年1月1日到2017年12月31日两年的观测亮温资料,采用两种基于长时间观测序列的方法(平均值与标准差法、标准估算误差法)来识别全球陆面在C波段(6.9 GHz和新增7.3 GHz通道)的无线电频率干扰,同时还统计分析了长时间RFI信号的分布及变化特征.通过与成熟的谱差法对比验证表明,平均值与标准差法、标准估算误差法对识别全球陆面在C波段的无线电频率干扰是行之有效的,而且标准估算误差法能够将谱差法、平均值与标准差法在冰雪覆盖区域(如格陵兰岛)识别的虚假RFI信号给剔除,有助于得到更加准确的全球无线电频率干扰信号分布图.研究还发现,RFI信号的空间位置分布随时间的推移是逐渐变化的,其出现概率与通道的极化特性有关,且在6.9 GHz水平极化通道识别出RFI信号的视场总数多于垂直极化通道,而在7.3 GHz水平极化通道识别出RFI信号的区域则少于垂直极化通道.同一频率的升轨和降轨资料中RFI信号的出现概率也不同,不论6.9 GHz和7.3 GHz的水平还是垂直极化通道,在升轨资料中识别出RFI信号的视场总数都多于降轨资料.
        Identification of Radio Frequency Interference(RFI) signals plays an important role in improving the utilization of spaceborne passive microwave data.AMSR-2(Advanced Microwave Scanning Radiometer-2)observations at 6.9 GHz and 7.3 GHz from January 1, 2016 to December 31, 2017 over global land are carefully analyzed by two methods(means and standard deviations of spectral indices,standard error of estimate) based on time series. Then, we use the mature spectral different method to verify results of these two methods. At the same time, the distribution and characteristics of long-term RFI signals were also analyzed and studied. It was found that these two methods based on long time series are effective for determining RFI over global land at 6.9 GHz and 7.3 GHz. What is more, the SE method is a more reliable method since it produces less false RFI pixels than other two methods. We also found that RFI sources are not always constant through time. The distribution of RFI is also related to the polarization characteristic of channels. At 6.9 GHz, the total number of FOVs where determined RFI signals at horizontal polarization channel is greater than that at vertical polarization channel. However,at 7.3 GHz, the total number of land pixels where determined RFI signals at horizontal polarization channel is less than that at vertical polarization channel. The distribution of RFI signals at different passes is also different. Regardless of 6.9 GHz or 7.3 GHz, ascending-pass measurements are more contaminated than descending-pass measurements.
引文
Ellingson S W,Johnson J T.2006.A polarimetric survey of radio-frequency interference in C-and X-bands in the continental United States using WindSat radiometry[J].IEEE Transactions on Geoscience and Remote Sensing,44(3):540-548.
    Ermida S L,Jiménez C,Prigent C,et al.2017.Inversion of AMSR-E observations for land surface temperature estimation:2.Global comparison with infrared satellite temperature[J].Journal of Geophysical Research Atmospheres,122(6):3348-3360,doi:10.1002/2016JD026148.
    Feng C C,Zhao H.2015.Identification of radio-frequency interference signal from FY-3B microwave radiation imager over ocean[J].Journal of Remote Sensing (in Chinese),19(3):465- 475.
    Guan L,Huang A J.2016.Detection of radio-frequency interference over land from AMSR-2 observations at 7.3 GHz[J].Laser & Optoelectronics Progress (in Chinese),53(2):208-213.
    Guan L,Xia S C,Zhang S B.2015.Identifying the interference of spaceborne microwave radiometer over large water area[J].Journal of Applied Meteorological Science (in Chinese),26(1):22-31.
    Guan L,Zhang S B.2014.Source analysis of radio-frequency interference over europe land from advanced microwave scanning radiometer-E[J].Acta Optica Sinica (in Chinese),34(7):1-7.
    HUI Wen,GUO Qiang,WU Qiong,et al.2016.Image quality evaluation of FY-2G meteorological satellite[J].Progress in Geophysics (in Chinese),31(5):1902-1910,doi:10.6038/pg20160503.
    Japan Aerospace Exploration Agency (JAXA) Press.2012.Launch result of the global changing observation mission 1st-water “SHIZUKU” (GCOM-W1) and the Korean multipurpose satellite 3 (KOMPSAT-3) by H-IIA launch vehicle No.21[EB/OL].http://www.jaxa.jp/press/2012/05/20120518-h2af21-e.html,2012.
    KANG Yue,WEN Jun,ZHANG Tang-Tang,et al.2014.Assessment of the land surface wetness by using satellite remote sensing data over the Loess Plateau[J].Chinese Journal Of Geophysics (in Chinese),57(8):2473-2483,doi:10.6038/cjg20140809.
    Li L,Gaiser P W,Bettenhausen M H,et al.2006.WindSat radio-frequency interference signature and its identification over land and ocean[J].IEEE Transactions on Geoscience and Remote Sensing (in Chinese),44(3):530-539.
    Li L,Njoku E G,Im E,et al.2004.A preliminary survey of Radio-Frequency Interference over the U.S.in Aqua AMSR-E data[J].IEEE Transactions on Geoscience and Remote Sensing (in Chinese),42(2):380-390.
    LI Xiao-Qing,YANG Hu,YOU Ran,et al.2012.Remote sensing typhoon Songda’s rainfall structure based on Microwave Radiation Imager of FY-3B satellite[J].Chinese Journal Of Geophysics (in Chinese),55(09):2843-2853,doi:10.6038/j.issn.0001-5733.2012.09.004.
    Moncet J L,Liang P,Galantowicz J F,et al.2011.Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control[J].Journal of Geophysical Research,116(D16),doi:10.1029/2010JD015429.
    Njoku E G,Ashcroft P,Chan T K,et al.2005.Global survey and statistics of Radio-Frequency Interference in AMSR-E land observations[J].IEEE Transactions on Geoscience and Remote Sensing,43(5):938-947.
    Njoku E G,Jackson T J,Lakshmi V,et al.2003.Soil moisture retrieval from AMSR-E[J].IEEE Transactions on Geoscience and Remote Sensing,41(2):215-229.
    QIAN Bo,LU Qi-feng,YNAG Su-ying,et al.2016.Review on microwave land surface emissivity by satellite remote sensing[J].Progress in Geophysics (in Chinese),31(3):960-964,doi:10.6038/pg20160304.
    Rothrock D A,Thomas D R,Thorndke A S.1988.Principal component analysis of satellite passive microwave data over sea ice[J].Journal of Geophysical Research,93(C3):2321-2332.
    Spreen G.,Kaleschke L,Heygster G.2008.Sea ice remote sensing using AMSR-E 89-GHz channels[J].Journal of Geophysical Research Atmospheres,113(C2),doi:10.1029/2005JC003384.
    Tian X X,Zou X L.2016a.An Empirical Model for Television Frequency Interference Correction of AMSR2 Data Over Ocean Near the U.S.and Europe[J].IEEE Transactions on Geoscience & Remote Sensing,54(7):3856-3867.
    Tian X X,Zou X L.2016b.Television Frequency Interference in AMSR2 K-Band Measurements Over Reflective Surfaces[J].IEEE Geoscience & Remote Sensing Letters,13(11):1621-1625.
    WANG Rui,SHI Shun-Wen,YAN Wei,et al.2014.Sea surface wind retrieval from polarimetric microwave radiometer in typhoon area[J].Chinese Journal Of Geophysics (in Chinese),57(3):738-751,doi:10.6038/cjg20140305.
    WU Ying,JIANG Su-lin,QIAN Bo,et al.2017.Review on identifying the radio frequency interference of spaceborne microwave radiometer[J].Progress in Geophysics (in Chinese),32(5):1944-1952,doi:10.6038/pg20170511.
    Wu Y,Weng F Z.2011.Detection and correction of AMSR-E radio-frequency interference[J].Acta Meteorologica Sinica (in Chinese),25(5):669- 681.
    Zhao J,Zou X L,Weng F Z.2013.WindSat radio-frequency interference signature and its identification over Greenland and Antarctic[J].IEEE Transactions on Geoscience and Remote Sensing,51(9):4830- 4839.
    Zou X L.2012.Serial of Applications of Satellite Observations Introduction to microwave imager radiance observations from polar-orbiting meteorological satellites[J].Advances in Meteorological Science and Technology (in Chinese),2 (3):45-50.
    Zou X L,Weng F Z,Tian X X.2015.An effective mitigation of radio frequency interference over land by adding a new C-band on AMSR2[J].Advances in Meteorological Science and Technology (in Chinese),5(2):35- 41,doi:10.3969/j.issn.2095-1973.2015.02.006.
    Zou X L,Zhao J,Weng F Z,et al.2012.Detection of radio-frequency interference signal over land from FY-3B microwave radiation imager (MWRI)[J].IEEE Transactions on Geoscience and Remote Sensing,50(12):4994-5003.
    冯呈呈,赵虹.2015.FY-3B微波成像仪海洋数据无线电干扰识别[J].遥感学报,19(3):465- 475.
    官莉,黄安晶.2016.陆地AMSR-27.3 GHz观测无线电频率干扰的检测[J].激光与光电子学进展,53(2):208-213.
    官莉,夏仕昌,张思勃.2015.大面积水体上空星载微波辐射计的干扰识别[J].应用气象学报,26(1):22-31.
    官莉,张思勃.2014.星载微波辐射计欧洲大陆无线电频率干扰分析[J].光学学报,34(7):1-7.
    惠雯,郭强,吴琼,等.2016.FY-2G静止气象卫星遥感图像质量评价[J].地球物理学进展,31(5):1902-1910,doi:10.6038/pg20160503.
    康悦,文军,张堂堂,等.2014.卫星遥感数据评估黄土高原陆面干湿程度研究[J].地球物理学报,57(8):2473-2483,doi:10.6038/cjg20140809.
    李小青,杨虎,游然,等.2012.利用风云三号微波成像仪资料遥感“桑达”台风降雨云结构[J].地球物理学报,55(09):2843-2853,doi:10.6038/j.issn.0001-5733.2012.09.004.
    钱博,陆其峰,杨素英,等.2016.卫星遥感微波地表发射率研究综述[J].地球物理学进展,31(3):960-964,doi:10.6038/pg20160304.
    王蕊,史顺文,严卫,等.2014.利用全极化微波辐射计资料反演台风境内海面风场[J].地球物理学报,57(3):738-751,doi:10.6038/cjg20140305.
    吴莹,姜苏麟,钱博,等.2017.星载微波资料频率干扰信号识别研究综述[J].地球物理学进展,32(5):1944-1952,doi:10.6038/pg20170511.
    邹晓蕾.2012.极轨气象卫星微波成像仪资料[J].气象科技进展,2(3):45-50.
    邹晓蕾,翁福忠,田小旭.2015.AMSR2仪器上新增设的C波段通道对陆地无线电频率干扰的有效缓解[J].气象科技进展,5(2):35- 41,doi:10.3969/j.issn.2095-1973.2015.02.006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700