用户名: 密码: 验证码:
大气压交流旋转滑动弧放电及其应用于促进甲烷干重整
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:AC Rotating Gliding Arc Discharge at Atmospheric Pressure and Its Application for Dry Reforming of Methane
  • 作者:王赛 ; 鲁娜 ; 商克峰 ; 姜楠 ; 李杰 ; 吴彦
  • 英文作者:WANG Sai;LU Na;SHANG Kefeng;JIANG Nan;LI Jie;WU Yan;School of Electrical Engineering, Dalian University of Technology;
  • 关键词:等离子体 ; 交流 ; 旋转滑动弧 ; 放电特性 ; 甲烷干重整
  • 英文关键词:plasma;;AC;;rotating gliding arc;;characteristic of discharge;;dry reforming of methane
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:大连理工大学电气工程学院;
  • 出版日期:2019-04-04 10:43
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.318
  • 基金:国家自然科学基金(U1462105)~~
  • 语种:中文;
  • 页:GDYJ201905014
  • 页数:10
  • CN:05
  • ISSN:42-1239/TM
  • 分类号:114-123
摘要
旋转滑动弧放电等离子体具有较高的能量密度和良好的化学选择性,在甲烷干重整方面有良好的应用前景。实验分析了大气压切向气流驱动的交流旋转滑动弧放电特性,并进行了甲烷干重整研究。交流旋转滑动弧放电过程中根据电流信号特征的不同分为击穿伴随滑动(B-G)模式和稳定滑动(A-G)模式;对电信号进行快速傅立叶变换(FFT)发现B-G模式下电流电压波形失真严重,且功率小于A-G模式;随着电弧的稳定滑动,电压升高,滑动弧消耗的功率持续增大。在甲烷干重整实验中,重整效果受到CH4含量、放电电压以及气体体积流量的影响;当CH4体积分数提高到40%时,甲烷干重整效果的能量效率达到3.58 mmol/kJ;增大电压可以提高反应物转化率,但能量效率有所下降;提高气体体积流量会降低反应物的停留时间,抑制甲烷干重整的效果。
        The rotating gliding arc discharge plasma has high energy density and good chemical selectivity, so it exhibits good application prospect in dry reforming of methane. The characteristics of AC rotating gliding arc discharge driven by tangential air flow were analyzed and dry reforming of methane was studied in the experiment. The results show that the AC rotating gliding arc discharge program can be divided into the Breakdown Gliding(B-G) Mode and Steady Arc Gliding(A-G) Mode according to the characteristics of current. The FFT transformation of the electrical signal reveals that the waveforms of current and voltage are distorted seriously in B-G mode, and the power of B-G mode is less than that of A-G mode. With the steady gliding of the arc, the voltage rise and the power consumption of the gliding arc continuously increase. In the dry reforming of methane experiment, the effect of reforming is affected by the CH4 content, discharge voltage, and gas flow rate. When the CH4 content increases to 40%, the energy efficiency of the dry reforming of methane is 3.58 mmol/kJ. Increasing the voltage can enhance the conversion rate of reactants, but the energy efficiency decreases.The faster gas flow rate shortens the residence time of reactants, thereby inhibiting the effect of dry reforming of methane.
引文
[1]XU Y,ZHANG X Q,YANG C H,et al.Recent development of CO2reforming of CH4 by“arc”plasma[J].Plasma Science and Technology,2016,18(10):1012.
    [2]VALDERRAMA G,KIENNEMANN A,GOLDWASSER M R.La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane[J].Journal of Power Sources,2010,195(7):1765-1771.
    [3]SIERRA G,GALLEGO J,BATIOT C,et al.Influence of Pr and Ce in dry methane reforming catalysts produced from La(1-x)A(x)NiO(3-delta)perovskites[J].Applied Catalysis A-General,2009,369(1/2):97-103.
    [4]MIZERACZYK J,URASHIMA K,JASINSKI M,et al.Hydrogen production from gaseous fuels by plasmas-a review[J].International Journal of Plasma Environmental Science and Technology,2014,8(2):89-97.
    [5]鲁娜,暴晓丁,商克峰,等.电极结构及填充介质对二氧化碳重整甲烷制合成气的影响[J].高电压技术,2018,44(3):881-889.LU Na,BAO Xiaoding,SHANG Kefeng,et al.Effects of electrode structure and packing materials on conversion of methane and carbon dioxide into synthesis gas[J].High Voltage Engineering,2018,44(3):881-889.
    [6]NOZAKI T,OKAZAKI K.Non-thermal plasma catalysis of methane:principles,energy efficiency,and applications[J].Catal Today.2013,211:29-38.
    [7]GALLON H J,TU X,TWIGG M V,et al.Plasma-assisted methane reduction of a NiO catalyst e low temperature activation of methane and formation of carbon nanofibres[J].Applied Catalysis B:Environmental,2011,106:616-20.
    [8]李和平,于达仁,孙文廷,等.大气压放电等离子体研究进展综述[J].高电压技术,2016,42(12):3697-3727.LI Heping,YU Daren,SUN Wenting,et al.State-of-the-art of atmospheric discharge plasmas[J].High Voltage Engineering,2016,42(12):3697-3727.
    [9]牛宗涛,章程,王瑞雪,等.脉冲重复频率对微秒脉冲滑动放电特性影响的实验研究[J].电工技术学报,2016,31(19):191-198.NIU Zongtao,ZHANG Cheng,WANG Ruixue,et al.Experimental study on the effect of the pulse repetition frequency on the characteristics of microsecond-pulse gliding discharges[J].Transactions of China Electrotechnical Society,2016,31(19):191-198.
    [10]ZHENG X G,TAN S Y,DONG L C,et al.Experimental and kinetic investigation of the plasma catalytic dry reforming of methane over perovskite LaNiO3 nanoparticles[J].Fuel Processing Technology,2015,137:250-8.
    [11]何立明,雷健平,陈一,等.大气压交流旋转滑动弧的放电特性[J].高电压技术,2017,43(9):3061-3069.HE Liming,LEI Jianping,CHEN Yi,et al.Characteristic of atmospheric pressure AC rotating gliding arc discharge[J].High Voltage Engineering,2017,43(9):3061-3069.
    [12]MALIK M A,JIANG X Z.The CO2 reforming of natural gas in a pulsed corona discharge reactor[J].Plasma Chem Plasma Process 1999,19(4):505-12.
    [13]张浩,朱凤森,李晓东,等.滑动弧放电等离子体重整甲烷关键技术分析[J].高电压技术,2015,41(9):2930-2942.ZHANG Hao,ZHU Fengsen,LI Xiaodong,et al.The key technology analysis of gliding arc discharge plasma tomethane reforming[J].High Voltage Engineering,2015,41(9):2930-2942.
    [14]李晓东,张明,朱凤森,等.滑动弧促进甲烷干重整电弧图像及电参数分析[J].高电压技术,2015,41(6):2022-2029.LI Xiaodong,ZHANG Ming,ZHU Fengsen,et al.Arc image and electric parameters analysis about sliding arc promote the dry reforming of methane[J].High Voltage Engineering,2015,41(6):2022-2029.
    [15]钟犁,严建华,薄拯,等.二维交流滑动弧放电物理参数分析[J].高压电器,2011,47(1):80-85,90.ZHONG Li,YAN Jianhua,BO Zheng,et al.Analysis of the physical parameters of two-dimensional AC gliding arc[J].High Voltage Apparatus,2011,47(1):80-85,90.
    [16]CHUN Y N,YANG Y C,YOSHIKAWA K.Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst reformer[J].Catalysis Today 2009,148:283-9.
    [17]鲁娜,孙丹凤,王冰,等.交流旋转滑动弧的放电特性[J].高电压术,2018,44(6):1930-1937.LU Na,SUN Danfeng,WANG Bing,et al.Research on discharge characteristic of AC rotating gliding arc[J].High Voltage Engineering,2018,44(6):1930-1937.
    [18]PIAVIS W,TURN S.An experimental investigation of reverse vortex flow plasma reforming of methane[J].International journal of Hydrogen Energy,2012,37(22):17078-92.
    [19]张明.旋转滑动弧耦合催化剂促进甲烷干重整制取合成气的实验研究[D].杭州:浙江大学,2015.ZHANG Ming.Plasma-catalyst coupling assisted dry reforming of methane in a rotating gliding arc[D].Hangzhou,China:Zhejiang University,2015
    [20]SONG H K,CHOI J W,YUE S H,et al.Synthesis gas production via dielectric barrier discharge over Ni/g-Al2O3 catalyst[J].Catalysis Today,2004,89:27-33.
    [21]何立明,陈一,刘兴建,等.大气压交流滑动弧的放电特性[J].高电压技术,2016,42(6):1921-1928.HE Liming,CHEN Yi,LIU Xingjian,et al.Discharge characteristic of atmospheric pressure AC gliding arc[J].High Voltage Engineering,2016,42(6):1921-1928.
    [22]DAI B,ZHANG X,GONG W,et al.Study on the methane coupling under pulse corona plasma by using CO2 as oxidant[J].Plasma Science and Technology,2000,2:577-80.
    [23]WANG Q,YAN B H,JIN Y,et al.Investigation of dry reforming of methane in a dielectric barrier discharge reactor[J].Plasma Chemistry and Plasma Processing,2009,29(3):217-28
    [24]ZHANG A J,ZHU A M,GUO J,et al.Conversion of greenhouse gases into syngas via combined effects of discharge activation and catalysis[J].Journal of The Chinese Institute of Chemical Engineers,2009,156:601-606.
    [25]ZHANG J Q,ZHANG J S,YANG Y J,et al.Oxidative coupling and reforming of methane with carbon dioxide using a pulsed microwave plasma under atmospheric pressure[J].Energy and Fuels,2003,17(1):54-59.
    [26]XIA Y,LU N,WANG B,et al.Dry reforming of CO2-CH4 assisted by high-frequency AC gliding arc discharge:Electrical characteristics and the effects of different parameters[J].International Journal of Hydrogen Energy,2017,42(36):22776-22785.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700