用户名: 密码: 验证码:
大兴安岭四方山天池全新世以来沉积物正构烷烃分布、单体碳同位素特征及古环境意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:N-alkanes distributions and compound-specific carbon isotope records and their paleoenviromental significance of sediments from Lake Sifangshan in the Great Khingan Mountain,Northeastern China
  • 作者:刘嘉丽 ; 刘强 ; 伍婧 ; 储国强 ; 刘嘉麒
  • 英文作者:LIU Jiali;LIU Qiang;WU Jing;CHU Guoqiang;LIU Jiaqi;Key Laboratory of Cenozoic Geology and Environment,Institute of Geology and Geophysics,Chinese Academy of Sciences;
  • 关键词:大兴安岭 ; 四方山天池 ; 湖泊沉积物 ; 正构烷烃 ; 单体碳同位素 ; 湖泊演化
  • 英文关键词:Great Khingan Mountain;;Lake Sifangshan;;lake sediment;;n-alkanes;;compound-specific carbon isotope;;lake evolution
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:中国科学院地质与地球物理研究所新生代地质与环境重点实验室;
  • 出版日期:2017-03-06
  • 出版单位:湖泊科学
  • 年:2017
  • 期:v.29
  • 基金:国家自然科学基金项目(41272392,41572353,41320104006)资助
  • 语种:中文;
  • 页:FLKX201702026
  • 页数:14
  • CN:02
  • ISSN:32-1331/P
  • 分类号:244-257
摘要
对位于大兴安岭中北段四方山天池全新世以来湖泊沉积物中正构烷烃的分布特征及其单体碳同位素组成进行了讨论分析.结果表明,正构烷烃碳数分布范围为nC_(17)~nC_(33),绝大多数样品具有单峰型的分布特征,少数样品呈现双峰型分布特征,单峰型以nC_(27)为主峰,双峰型分布中前峰群以nC_(21)为主峰、后峰群以nC_(27)为主峰;短链正构烷烃(nC_(27))具有明显的奇碳优势;正构烷烃的分布特征揭示四方山天池湖泊沉积物中的有机质来源于陆生植物和水生植物的共同输入,并以陆生植物贡献为主.全新世以来,四方山天池湖泊沉积物中长链正构烷烃单体碳同位素值(δ~(13)C_(27~31))逐渐偏负,与太阳辐射的变化表现出明显的一致性,表明在轨道尺度上该区域的有效湿度的逐渐增加主要受太阳辐射的控制,湖泊水位的变化则既受到西太平洋副热带高压和鄂霍次克海高压相对位置的影响,又受到东南季风和东北季风势力强弱的制约.根据多种气候代用指标的变化,全新世以来四方山天池湖泊环境及其区域气候演化可以划分为5个阶段:(1)11.2-8.0 ka BP:区域有效湿度较低,陆生C_3植物中木本植物比例略有增加,湖泊水位频繁波动,湖泊初级生产力下降,湖泊营养状态发生贫化;(2)8.0-6.4 ka BP:区域有效湿度增加,陆生C_3植物中草本植物比例略有增大,湖泊水面收缩、水位下降,湖泊初级生产力变化不大,湖泊营养状态较为稳定;(3)6.4-3.4 ka BP:区域有效湿度比上一阶段更高,陆生C_3植物中木本植物扩张,草本植物比例相对收缩,湖泊水位上升、水面扩大,湖泊初级生产力增加,湖泊营养状态发生好转;(4)3.4-2.4 ka BP:区域有效降水量继续增加,陆生C_3植物中草本植物比例升高,湖泊水位下降、水面收缩,湖泊初级生产力下降,湖泊营养状态发生贫化;(5)2.4-0.9 ka BP:区域有效湿度较高,陆生C_3植物中木本植物逐渐增加,湖泊水位上升、水面扩张,湖泊初级生产力增加,湖泊营养状态有所好转.四方山天池湖泊沉积物所记录的全新世以来区域气候环境演化历史,既与中国东北地区其他高分辨率气候记录有较好的一致性,也存在着差异性,表现出独有的区域气候特征.
        Lake Sifangshan( 49°22'32. 97″N,123°27'49. 90″E,altitude: 933 m asl) is a nearly dried up volcanic lake,located on the central-northern part of the Great Khingan Mountain,northeast China. This study obtained n-alkane samples from Holocene sediment cores in the lake,and analysed their distribution and compound specific carbon isotope compositions. The distribution of n-alkanes showed the four following characteristics:( 1) a homologous series of n-alkanes was detected with carbon numbers ranging from n C17 to n C33; 2) Most samples show a single peak,while others have double peeks; 3) For single peak samples,the peak is nC_(27),and for double peak samples,the first peak is nC_(21) and the second peak is nC_(27); 4) For short chain( < nC_(21)) nalkanes do not have obvious carbon number characteristics. For middle( n C23~ n C25) and long( > nC_(27)) chain n-alkanes have an odd-over-even carbon number predominance. These characteristics show that the organic matter in the lake came from both terrestrial and aquatic plants,the former of which is the main input. The isotope ratios( δ13C27 ~ 31) of n-alkanes in these samples are negative,and gradually decreases along the time,in good accordance with changes of summer solar radiation in the Northern Hemisphere during the Holocene. This implies that effective precipitation changes on the orbital scale were directly controlled by changes in summer solar radiation. Based on above proxy indicators,the environmental evolution of Lake Sifangshan during Holocene is divided into five stages:( 1) In the 11. 2- 8. 0 ka BP,effective precipitation was low and proportion of woody plants in terrestrial C3 plants increased slightly. The lake water level fluctuated frequently,but the primary productivity and nutritional status of the lake deteriorated.( 2) In the 8. 0- 6. 4 ka BP,effective precipitation increased and proportion of woody plants in terrestrial C_3 plants increased slightly. The lake surface area shrunk and water level dropped. The primary productivity and nutritional status of the lake were stable.( 3) In the 6. 4- 3. 4 ka BP,effective precipitation was higher than that in the previous stage,and the proportion of woody plants increased but that of herbs decreased. The lake surface area expanded and water level rised. The primary productivity increased,and the tropical level of the lake started to be lower;( 4) In the 3. 4- 2. 4 ka BP,effective precipitation continued to rise,and the proportion of herbs increased. The lake surface area shrunk and water level dropped. The primary productivity decreased,and depletion of nutrition occurred again.( 5) In the 2. 4- 0. 9 ka BP,effective precipitation was in a high level and the proportion of woody plants increased gradually. The lake surface area expanded and water level rised. The primary productivity increased and the tropical level of the lake started to get lower. The climatic evolution produced by this study is in good agreement with other high-resolution climate records of Northeast China,and the differences show unique regional climate characteristics of the Lake Sifangshan.
引文
[1]Xian Feng,Zhou Weijian,Yu Huagui.The abrupt changes and periodicities of climate during Holocene.Marine Geology&Quaternary Geology,2006,26(5):109-115.[鲜锋,周卫健,余华贵.全新世气候系统的突变及周期性.海洋地质与第四纪地质,2006,26(5):109-115.]
    [2]O'Brien SR,Mayevoski PA,Meeker LD et al.Complexity of Holocene climate as reconstructed from a Greenland ice core.Science,1995,270:1962-1964.
    [3]Baker PA,Seltze GO,Fritz SC et al.The History of South American tropical precipitation for the past 25,000 years.Science,2001,291:640-643.
    [4]Luekge A,Doose-Rolinski H,Khhan AA et al.Monsoonal variability in the northeastern Arabian Sea during the past 5000years:Geochemical evidence from laminated sediment.Paleogeography Paleoclimatology Paleoecology,2001,167:173-186.
    [5]Mc Dermott F,Mattey DP,Hawkesworth C.Centennial-scale Holocen climate variability revealed by a high-resolution speleothemδ18O record from SW Ireland.Science,2001,294:1328-1331.
    [6]Shi Yafeng,Kong Zhaochen,Wang Sumin et al.The Holocene Megathermal climate and environment in China.Science in China:Series B,1993,23(8):865-873.[施雅风,孔昭宸,王苏民等.中国全新世大暖期鼎盛阶段的气候与环境.中国科学:B辑,1993,23(8):865-873.]
    [7]An Zhisheng,Porter SC,Wu Xihao et al.Holocene optimum in Central and East China and East Asian summer monsoon evolution.Chinese Science Bulletin,1993,38(14):1302-1305.[安芷生,波特SC,吴锡浩等.中国中、东部全新世气候适宜期与东亚夏季风变迁.科学通报,1993,38(14):1302-1305.]
    [8]Wu Xihao,An Zhisheng,Wang Sumin et al.The temporal andspatial variation of East Asian summer monsoon in Holocene Optimum in China.Quaternary Sciences,1994,(1):24-37.[吴锡浩,安芷生,王苏民等.中国全新世气候适宜期东亚夏季风时空变迁.第四纪研究,1994,(1):24-37.]
    [9]Wang YJ,Cheng H,Edwards RL et al.A high-resolution absolute-dated late pleistocene monsoon record from Hulu Cave,China.Science,2001,294:2345-2348.
    [10]Chen CTA,Lan CH,Lou JY et al.The dry Holocene Megathermal in Inner Mongolia.Palaeogeography,Palaeoclimatology,Palaeoecology,2003,193(2):181-200.
    [11]Zhou W,Xie S,Meyers PA et al.Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence.Organic Geochemistry,2005,36:1272-1284.
    [12]An CB,Feng ZD,Barton L.Dry or humid?Mid-Holocene humidity changes in arid and semi-arid China.Quaternary Science Reviews,2006,25(S3-4):351-361.
    [13]Xiao JL,Si B,Zhai DY et al.Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability.Journal of Paleolimnology,2008,40:519-528.
    [14]Zhou W,Zheng Y,Meyers PA et al.Postglacial climate change record in biomarker lipid compositions of the Hani peat sequence,Northeastern China.Earth and Planetary Science Letters,2010,294(1/2):37-46.
    [15]Wu J,Liu Q,Wang L et al.Vegetation and Climate Change during the Last Deglaciation in the Great Khingan Mountain,Northeastern China.PLo S One,2016,11(1):e0146261.DIO:10.1371/journal.pone.0146261.
    [16]Schettler G,Liu Q,Mingram J et al.Palaeovariations in the East-Asian monsoon regime geochemically recorded in varved sediments of Lake Sihailongwan(Northeast China,Jinlin province).Part 1:Hydrological conditions and dust flux.Journal of Paleolimnology,2006,35(2):239-270.
    [17]Chu GQ,Sun Q,Wang XH et al.A 1600 year multiproxy record of paleoclimatic change from varved sediments in Lake Xiaolongwan,North Eastern China.Journal of Geophysical Research Atmospheres,2009,114(114):2191-2196.
    [18]Panizzo VN,Mackay AW,Rose NL et al.Recent palaeolimnological change recorded in Lake Xiaolongwan,northeast China:Climatic versus anthropogenic forcing.Quaternary International,2013,290-291:322-334.
    [19]Hong B,Liu CQ,Lin QH et al.Temperature evolution from theδ18O record of Hani peat,Northeast China,in the last14000 years.Science in China(Series D):Earth Sciences,2009,39(5):626-637.
    [20]Hong B,Hong YT,Lin QH et al.Anti-phase oscillation of Asian monsoons during the Younger Dryas period:Evidence from peat celluloseδ13C of Hani,Northeast China.Palaeogeography,Palaeoclimatology,Palaeoecology,2010,297(1):214-222.
    [21]Xiao JL,Chang ZC,Si B et al.Partitioning of the grain-size components of Dali Lake core sediments:Evidence for lakelevel changes during the Holocene.Journal of Paleolimnology,2009,42(2):249-260.
    [22]Wen RL,Xiao JL,Chang ZC et al.Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia,China.Boreas,2009,39(2):262-272.
    [23]Wen RL,Xiao JL,Chang ZC et al.Holocene climate changes in mid-high-Latitude-monsoon margin reflected by the pollen record from Hulun Lake,northeastern Inner Mongolia.Quaternary Research,2010,73(2):293-303.
    [24]Xiao JL,Chang ZC,Wen RL et al.Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia,China.The Holocene,2009,19(6):899-908.
    [25]Liu Qiang,Li Qian,Wang Luo et al.Stable carbon isotope record of bulk organic matter from a sediment core at Moon Lake in the middle part of the Da Xing'an Range Northeast China during the last 21ka B.P..Quaternary Sciences,2010,30(6):1069-1077.[刘强,李倩,旺罗等.21ka B.P.以来大兴安岭中段月亮湖沉积物全岩有机碳同位素组成变化及其古气候意义.第四纪研究,2010,30(6):1069-1077.]
    [26]Wang XC,Druffel ERM,Griffin S et al.Radiocarbon studies of organic compound classes in plankton and sediment of the northeastern Pacific Ocean.Geochimica et Cosmochimica Acta,1998,62(8):1365-1378.
    [27]Eglinton TI,Eglinton G.Molecular proxies for paleoclimatology.Earth&Planetary Science Letters,2008,275(1/2):1-16.
    [28]Castaeda IS,Schouten S.A review of molecular organic proxies for examining modern and ancient lacustrine environments.Quaternary Science Reviews,2011,30:2845-3218.
    [29]Fan Qicheng,Zhao Yongwei,Sui Jianli et al.Studies on Quaternary volcanism stages of Nuomin river area in the Great Xing'an Range:Evidence from petrology,K-Ar dating and volcanic geology features.Acta Petrologica Sinica,28(4):1092-1098.[樊祺诚,赵勇伟,隋建立等.大兴安岭诺敏河第四纪火山岩分期:岩石学、年代学与火山地质特征.岩石学报,2012,28(4):1092-1098.]
    [30]Zhao Yongwei,Fan Qicheng,Bai Zhida et al.Quaternary volcanism in the Nuomin River and Kuile River area of the Greater Hinggan Mountains.Science China:Earth Sciences,2013,56:173-181.DOI:10.1007/s11430-012-4544-7.[赵勇伟,樊祺诚,白志达等.大兴安岭诺敏河-奎勒河地区第四纪火山活动研究.中国科学:地球科学,2013,43(9):1464-1473.]
    [31]Sun Q,Xie MM,Shi LM et al.Alkanes,compound-specific carbon isotope measures and climate variation during the last millennium from varved sediments of Lake Xiaolongwan,northeast China.Journal of Paleolimnology,2013,50(3):331-344.
    [32]Chen F,Xu Q,Chen J et al.East Asian summer monsoon precipitation variability since the last deglaciation.Scientific Reports,2015,5.DOI:10.1038/srep11186.
    [33]Liu Jiali,Liu Qiang,Chu Guoqiang et al.Sediment record at Lake Sifangshan in the central northern part of the Great Xing'an range,Northeast China since 15.4 ka BP.Quaternary Sciences,2015,35(4):901-912.[刘嘉丽,刘强,储国强等.大兴安岭四方山天池15.4 ka BP以来湖泊沉积记录.第四纪研究,2015,35(4):901-912.]
    [34]Reimer PJ,Bard E,Bayliss A et al.Intcal13 and marine13 radiocarbon age calibration curves 0-50,000 years cal BP.Radiocarbon,2013,55(4):1869-1887.
    [35]Wang Y,Fang X,Zhang T et al.Predominance of even carbon-numbered n-alkanes from lacustrine sediments in Linxia Basin,NE Tibetan Plateau:Implications for climate change.Applied Geochemistry,2010,25(10):1478-1486.
    [36]Silva LSVD,Piovano EL,Azevedo DDA et al.Quantitative evaluation of sedimentary organic matter from Laguna Mar Chiquita,Argentina.Organic Geochemistry,2008,39(4):450-464.
    [37]Meyers PA,Ishiwatari R.Lacustrine organic geochemistry:An overview of indicators of organic matter sources and diagenesis in lake sediments.Organic Geochemistry,1993,20(7):867-900.
    [38]Lin Xiao,Zhu Liping,Wang Junbo et al.Sources and spatial distribution character of n-alkanes in surface sediments of Nam Co on the Tibetan Plateau.J Lake Sci,2009,21(5):654-662.DOI:10.18307/2009.0507.[林晓,朱立平,王君波等.西藏纳木错表层沉积物中正构烷烃的来源与空间分布特征.湖泊科学,2009,21(5):654-662.]
    [39]Cranwell PA.Lipids of aquatic organisms as potential contributors to lacustrine sediments.Organic Geochemistry,1987,11(87):513-527.
    [40]Ficken KJ,Li B,Swain DL et al.An n-alkane proxy for the sedimentary inputs of submerged/floating freshwater aquatic macrophytes.Organic Geochemistry,2000,31(00):745-749.
    [41]Mark P,Nikolai P,Matthew H et al.Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum.Nature,2006,442(7103):671-675.
    [42]Liu WG,Yang H,Wang HY et al.Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments:A dual indicator of paleoenvironment in the Qinghai-Tibet Plateau.Organic Geochemistry,2015,83/84:190-201.
    [43]DamstéJSS,Rijpstra WIC,Schouten S et al.A C25highly branched isoprenoid alkene and C25and C27n-polyenes in the marine diatom Rhizosolenia setigera.Organic Geochemistry,1999,30(30):95-100.
    [44]Gelpi E,OróJ,Schneider HJ et al.Olefins of highmolecular weight in two microscopic algae.Science,1968,161(3842):700-702.
    [45]Baas M,Pancost R,Geel BV et al.A comparative study of lipids in Sphagnum species.Organic Geochemistry,2000,31(6):535-541.
    [46]Chu G,Sun Q,Xie M et al.Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from northeastern China.Quaternary Science Reviews,2014,102:85-95.
    [47]Stevenson BA,Kelly EF,Mc Donald EV et al.The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region,Washington State,USA.Geoderma,2005,124(1/2):37-47.
    [48]Wang G,Li J,Liu X et al.Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction.Quaternary Science Reviews,2013,63(1):39-43.
    [49]Berger A,Loutre MF.Insolation values for the climate of the last 10 million years.Quaternary Science Reviews,1991,10(4):297-317.
    [50]Zhai D,Xiao J,Zhou L et al.Holocene East Asian monsoon variation inferred from species assemblage and shell chemistry of the ostracodes from Hulun Lake,Inner Mongolia.Quaternary Research,2011,75(3):512-522.
    [51]Seki O,Meyers PA,Kawamura K et al.Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in northeast China during the last 16 kyr.Organic Geochemistry,2009,40(6):671-677.
    [52]Pu Y,Zhang HC,Lei GL et al.Climate variability recorded by n-alkanes of paleolake sediment in Qaidam Basin on the northeast Tibetan Plateau in late MIS3.Science China Earth Science,2010,53(6):863-870.
    [53]Gagosian RB,Peltzer ET,Merrill JT.The importance of atmospheric input of terrestrial organic material to deep sea sediments.Organic Geochemistry,1986,10(4/5/6):661-669.
    [54]Zhang Z,Zhao M,Eglinton G et al.Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateauover the last 170 kyr.Quaternary Science Review,2006,25(5/6):575-594.
    [55]Simoneit BRT,Sheng GY,Chen XJ et al.Molecular marker study of extractable organic matter in aerosols from urban areas of China.Atmospheric Environment Part A General Topics,1991,25(10):2111-2129.
    [56]SchefuE,Ratmeyer V,Stuut JBW et al.Carbon isotope analysis of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic.Geochimica et Cosmochimica Acta,2003,67(10):1757-1767.
    [57]Dodd RS,Afzal-Rafii ZA.Habitat-related adaptive properties of plant cuticular lipids.Evolution,2000,54(4):1438-1444.
    [58]Dodd RS,Poveda MM.Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis.Biochemical Systematics and Ecology,2003,31(11):1257-1270.
    [59]Zhang Jie,Jia Guodong.Application of plant-derived n-alkanes and their compound specific hydrogen isotopic composition in paleoenvironment research.Advances in Earth Science,2009,24(8):874-881.[张杰,贾国东.植物正构烷烃及其单体氢同位素在古环境研究中的应用.地球科学进展,2009,24(8):874-881.]
    [60]Cranwell PA.Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change.Freshwater Biology,1973,3(3):259-265.
    [61]Xie SC,Nott CJ,Avsejs LA et al.Palaeoclimate records in compound-specificδD values of a lipid biomarker in ombrotrophic peat.Organic Geochemistry,2000,31(10):1503-1507.
    [62]Bush RT,Mcinerney FA.Leaf wax n-alkane distributions in and across modern plants:Implications for paleoecology and chemotaxonomy.Geochimica et Cosmochimica Acta,2013,117(117):161-179.
    [63]Bray EE,Evans ED.Distribution of n-paraffins as a clue to recognition of source beds.Geochimica et Cosmochimica Acta,1961,22(1):2-15.
    [64]Ishiwatari R,Hirakawa Y,Uzaki M et al.Organic geochemistry of the Japan Sea sediments-1:Bulk organic matter and hydrocarbon analyses of Core KH-79-3,C-3 from the Oki Ridge for paleoenvironment assessments.Journal of Oceanography,1994,50(2):179-195.
    [65]Rao Zhiguo,Jia Guodong,Zhu Zhaoyu et al.The spatial change character ofδ13C of total of organic matter andδ13C of long-chain n-alkanes of the surface soil across east China and their paleoenvironmental significance.Chinese Science Bulletin,2008,53(17):2077-2084.[饶志国,贾国东,朱照宇等.中国东部表土总有机质碳同位素和长链正构烷烃碳同位素对比研究及其意义.科学通报,2008,53(17):2077-2084.]
    [66]Luo P,Peng PA,LüHY et al.Latitudinal variations of CPI values of long-chain n-alkanes in surface soils:Evidence for CPI as a proxy of aridity.Science China:Earth Sciences,2012,55(7):1134-1146.
    [67]Dykoski CA,Edwards RL,Cheng H et al.A high-resolution,absolute-dated Holocene and deglacial Asian monsoon record from Donege Cave,China.Earth and Planetary Science Letters,2005,233(s1-2):71-86.
    [68]Wang YJ,Cheng H,Edwards RL et al.The Holocene Asian monsoon:Link to solar changes and North Atlantic climate.Science,2005,308:854-857.
    [69]Wang Y.Effects of blocking anticyclones in Eurasia in the rainy season(Meiyu/Baiu season).Journal of the Meteorological Society of Japan,1992,70(5):929-951.
    [70]Stott L,Cannariato K,Thunell R et al.Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch.Nature,2004,431(7004):56-59.
    [71]Sun Y,Oppo DW,Xiang R et al.Last deglaciation in the Okinawa Trough:Subtropical northwest Pacific link to Northern Hemisphere and tropical climate.Paleoceanography,2005,20(4):307-323.
    [72]Max L,Riethdorf JR,Tiedemann R et al.Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15,000 years.Paleoceanography,2012,27(3):151-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700