用户名: 密码: 验证码:
巴音河下游河床渗透系数空间变异性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial variability of hydraulic conductivity of riverbed sediment in the lower reaches of Bayin River
  • 作者:陈宝辉 ; 王文科 ; 段磊 ; 顾小凡 ; 刘超杰 ; 宋润峰
  • 英文作者:CHEN Baohui;WANG Wenke;DUAN Lei;GU Xiaofan;LIU Chaojie;SONG Runfeng;School of Environmental Science and Engineering,Chang'an University;Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region,Ministry of Education,Chang'an University;Xi'an Center of Geological Survey,CGS;Delingha Branch of Qinghai Province Hydrology and Water Resounes Survey Burean;
  • 关键词:河床沉积物 ; 垂向渗透系数 ; 空间变异性
  • 英文关键词:riverbed sediment;;vertical hydraulic conductivity;;spatial variability
  • 中文刊名:SJWJ
  • 英文刊名:Water Resources and Hydropower Engineering
  • 机构:长安大学环境科学与工程学院;旱区地下水文与生态效应教育部重点试验室;中国地质调查局西安地质调查中心;青海省水文水资源勘测局德令哈分局;
  • 出版日期:2019-01-20
  • 出版单位:水利水电技术
  • 年:2019
  • 期:v.50;No.543
  • 基金:国家自然科学基金重点项目(41230314);; 旱区地下水文与生态效应教育部重点试验室中心开放基金(2014G1502022);; 柴达木盆地巴音河-塔塔河流域1∶5万水文地质调查项目(121201011000150019)
  • 语种:中文;
  • 页:SJWJ201901007
  • 页数:6
  • CN:01
  • ISSN:11-1757/TV
  • 分类号:56-61
摘要
河床垂向渗透系数是研究河流与地下水转化关系和转化强度的重要水文地质参数。选取柴达木盆地巴音河为研究对象,采用水头下降竖管试验法测定了巴音河下游细土平原带38组河床垂向渗透系数,利用传统统计学方法检验分析了其分布规律和空间变异性。结果表明,河床沉积物垂向渗透系数(Kv)在1. 77~15. 56 m/d之间变化,总体呈现正态分布,且沿流程逐渐变小。河中心沉积物的Kv值明显大于河两岸,但其变异系数小于两岸。沉积物的颗粒大小与分布是导致河床沉积物垂向渗透系数变异的关键因素,河流形态与交互带水文过程对河床沉积物Kv的影响也不容忽视。
        The vertical hydraulic conductivity of riverbed sediment is an important hydrogeological parameter,influencing the exchange with groundwater in river basin. This paper selects the Bayin river in Qaidam basin as the research object and 38 groups of vertical hydraulic conductivity are obtained by using falling-head permeameter test in the downriver fine soil plain. The distribution and spatial variability are analyzed by using traditional statistical methods. The results show that the vertical hydraulic conductivity( Kv) of riverbed sediments varies within the range of 1. 77 ~ 15. 56 m/d and obeys normal distribution with gradually decreased along the flow. The value of Kvin the middle of the river is obviously greater than that on riverside,but the coefficient of variation is smaller than that on bank of the river. Size and distribution of sediment particles are the key factors leading to the variation of Kv,while the river morphology and interaction of hydrological processes also cannot be ignored.
引文
[1] WANG W,LI J,WANG W,et al. Estimating streambed parametersfor a disconnected river[J]. Hydrological Processes,2014,28(10):3627-3641.
    [2] GENEREUX D P,LEAHY S,MITASOVA H,et al. Spatial andtemporal variability of streambed hydraulic conductivity in West BearCreek,North Carolina,USA[J]. Journal of Hydrology,2008,358(3):332-353.
    [3] DONG W,CHEN X,WANG Z,et al. Comparison of vertical hy-draulic conductivity in a streambed-point bar system of a gainingstream[J]. Journal of Hydrology,2012,450-451(15):9-16.
    [4] KENNEDY C D,GENEREUX D P,MITASOVA H,et al. Effect ofsampling density and design on estimation of streambed attributes[J].Journal of Hydrology,2008,355(1-4):164-180.
    [5] WANG P,POZDNIAKOV S P,VASILEVSKIY P Y. Estimatinggroundwater-ephemeral stream exchange in hyper-arid environments:field experiments and numerical simulations[J]. Journal of Hydrolo-gy,2017,555:68-79.
    [6] TANG Q,KURTZ W,BRUNNER P,et al. Characterisation of river-aq-uifer exchange fluxes:The role of spatial patterns of riverbed hydraulicconductivities[J]. Journal of Hydrology,2015,531:111-123.
    [7] HUANG X,ANDREWS C B,LIU J,et al. Assimilation of tempera-ture and hydraulic gradients for quantifying the spatial variability ofstreambed hydraulics[J]. Water Resources Research,2016,52(8):6419-6439.
    [8] FREYBERG D L. A natural gradient experiment on solute transportin a sand aquifer:2. Spatial moments and the advection and disper-sion of nonreactive tracers[J]. Water Resources Research,1986,22(13):2031-2046.
    [9]王超,束龙仓,鲁程鹏.渗透系数空间变异性对低渗透地层中地下水溶质运移的影响[J].河海大学学报(自然科学版),2014,42(2):137-142.
    [10] CHEN X,SONG J,CHENG C,et al. A new method for mappingvariability in vertical seepage flux in streambeds[J]. HydrogeologyJournal,2009,17(3):519-525.
    [11]赵佳莉.格尔木河河床沉积物渗透系数变异性研究[D].西安:长安大学,2014.
    [12] CHEN X. Measurement of streambed hydraulic conductivity and itsanisotropy[J]. Environmental Geology,2000,39(12):1317-1324.
    [13] LANDON M K,RUS D L,HARVEY F E. Comparison of InstreamMethods for Measuring Hydraulic Conductivity in Sandy Streambeds[J]. Groundwater,2010,39(6):870-885.
    [14] HVORSLEV M J. Time Lag and Soil Permeability in Ground-WaterObservations,Waterways Experiment Station,Corps of Engineers[J]. US Army Bulletin,1951,36(118):1-50.
    [15]王周锋,段磊,陈立,等.多孔介质垂向渗透系数测量仪:CN204314194U[P]. 2015.
    [16] ALYAMANI M S,S,EN Z. Determination of Hydraulic Conductivityfrom Complete Grain-Size Distribution Curves[J]. Ground Water,1993,31(4):551-555.
    [17]中华人民共和国水利部.水利水电工程注水试验规程:SL 3452007[S].北京:中国水利水电出版社,2007.
    [18]郑紫文.新疆伊犁—巩乃斯河河床沉积物渗透系数空间变异性及河水与地下水转化关系[D].西安:长安大学,2017.
    [19]赵佳莉,王文科,王周锋,等.河床沉积物渗透系数空间变异性研究———以滦河下游为例[J].水文地质工程地质,2014,41(3):13-20.
    [20] STEWARDSON M J,DATRY T,LAMOUROUX N,et al. Variationin reach-scale hydraulic conductivity of streambeds[J]. Geomor-phology,2016,259(12):70-80.
    [21] SIMPSON S C,MEIXNER T. Modeling effects of floods on stre-ambed hydraulic conductivity and groundwater‐surface water inter-actions[J]. Water Resources Research,2012,48(2):2515.
    [22]张戈,卢娜,刘洁,等.柴达木盆地河流渗漏率及渗漏量[J].地质通报,2015,34(11):2083-2086.
    [23]来文立,宋进喜,沈鹏云.渭河河床沉积物垂向渗透系数深度变化分析[J].西北大学学报(自然科学版),2013,43(1):109-114.
    [24]徐绍峰.弯曲河段潜流带渗透系数与水交换变异特征研究[D].西安:西北大学,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700