用户名: 密码: 验证码:
养殖尾水循环渠中底泥微囊藻毒素含量与水化指标的相关关系分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Correlations between Microcystin Content in Sediment and Key Hydration Factors of Aquaculture Tailwater Circulation System
  • 作者:王雪莹 ; 毕相东 ; 董少杰 ; 张树林
  • 英文作者:WANG Xueying;BI Xiangdong;DONG Shaojie;ZHANG Shulin;Key Labortary of Aqua-ecology and Aquaculture of Tianjin, Department of Fisheries Sciences, Tianjin Agricultural University;
  • 关键词:养殖尾水循环渠 ; 微囊藻毒素 ; 底泥 ; 水化指标
  • 英文关键词:circulating ditch of aquaculture tail water;;microcystin;;sediment;;hydration indices
  • 中文刊名:TJNY
  • 英文刊名:Tianjin Agricultural Sciences
  • 机构:天津农学院水产学院天津市水产生态及养殖重点试验室;
  • 出版日期:2019-05-30 18:17
  • 出版单位:天津农业科学
  • 年:2019
  • 期:v.25;No.164
  • 基金:国家自然科学基金青年项目(31772857);; 天津市自然科学基金项目(17JCYBJC29500);; 天津中青年创新骨干人才项目;; 天津市水产产业技术体系(水环境调控岗位)
  • 语种:中文;
  • 页:TJNY201906003
  • 页数:4
  • CN:06
  • ISSN:12-1256/S
  • 分类号:23-26
摘要
近年来,随着池塘养殖业的不断发展,富营养化引起的蓝藻水华已成为一个严重的问题,蓝藻水华产生的微囊藻毒素污染因其毒性效应而引起了人们的广泛关注。为研究底泥中微囊藻毒素与关键水化指标间的相关关系,本试验在蓝藻爆发盛期循环水养殖系统的养殖尾水循环渠中,设置3个采样点,每2 d采样1次,共进行10 d,分别分析底泥中微囊藻毒素(MC-RR、MCLR)含量和水化指标(TN、TP、COD)。结果表明,试验期间水中TN、TP、COD含量的变化范围依次为0.26~0.66,0.23~0.60,6.23~7.86 mg·L~(-1);MC-RR、MC-LR以及MCs含量的变化范围依次为0.53~0.86,0.01~0.68,0.87~1.34μg·g~(-1);MC-RR与TN、TP、COD正相关,与N/P负相关,MC-LR与TN、TP、COD、N/P负相关,MCs与TP正相关,与TN、COD、N/P负相关,其中除MCs与TN相关关系显著(P<0.05)外,其他相关关系均未达显著水平(P>0.05)。
        In recent years, with the increasing development of pond aquaculture, cyanobacterial blooms caused by eutrophication have become a severe issue, in which the microcystin pollution causing by cyanobacterial blooms has attracted much attention due to their toxic effects. To study the correlations between microcystin content in sediment and key hydration factors of aquaculture tailwater, the experiment was conducted at the peak of cyanobacterial outbreak, three sampling points were set up and sampled once every 2 days for 10 days, the content of microcystin in sediment(MC-RR, MC-LR) and the key hydration factors(TN, TP, COD) were determined. The results showed that the contents of TN, TP and COD in water varied from 0.26 to 0.66 mg·L~(-1), from 0.23 to 0.60 mg·L~(-1),and from 6.23 to 7.86 mg·L~(-1), respectively. The contents of MC-RR, MC-LR and MCs varied from 0.53 to 0.86 μg·g~(-1), from 0.01 to0.68 μg·g~(-1), and from 0.87 to 1.34 μg·g~(-1), respectively. MC-RR was positively correlated with TN, TP, COD and negatively correlated with N/P, MC-LR was negatively correlated with TN, TP, COD, and N/P, MCs was positively correlated with TP, but negatively correlated with TN, COD, and N/P, in which the correlation between MCs and TN was significant(P<0.05) but other correlations were not significant(P>0.05).
引文
[1]孙成渤,李建国,赵冬艳,等.循环养殖系统中多级生物处理对水质的调控作用[J].淡水渔业,2010,40(3):36-43.
    [2]李华龙.循环水养殖系统主要氨氮降解微生物的初步研究[D].青岛:中国海洋大学,2013.
    [3]胡庚东,宋超,陈家长,等.池塘循环水养殖模式的构建及其对氮磷的去除效果[J].生态与农村环境学报,2011,27(3):82-86.
    [4]HUANG Y P. Contam ination and control of aquatic environment in Lake Taihu[M]. Beijing:Scence press, 2001.
    [5]SHAPIRO J. Blue-Green Algae:Why They Become Dominant[J].Science, 1973,179:382-384.
    [6]沈建国,章建.微囊藻毒素的污染现状、毒性机制和检测方法[J].预防医学情报杂志,2001,17(1):10-16.
    [7]ERNST B, HITZFELD B, DIETRICH D. Presence of Planktothrix sp. and cyanobacterial toxins in Lake Ammersee,Germany and their impact on whitefish(Coregonus lavaretus L.)[J].Environmental toxicology, 2001, 16(6):483-488.
    [8]DEBLOIS C P, ARANDA-RODRIGUEZ R, GIANI A, et al.Microcystin accumulation in liver and muscle of tilapia in two large Brazilian hydroelectric reservoirs[J].Toxicon, 2008, 51(3):435-448.
    [9]王朝晖,林少君,韩博平,等.广东省典型大中型供水水库和湖泊微囊藻毒素分布[J].水生生物学报, 2007, 31(3):307-311.
    [10]雷庆铎,马宁,陈志冉.郑州郊区精养池塘微囊藻毒素检测分析[J].水生态学杂志,2007,27(5):72,82.
    [11]蒲朝文,李恒,张仁平,等.三峡库区水及鱼体中微囊藻毒素污染现状[J].职业与健康,2011,27(7):804-805.
    [12]雷衍之.养殖水环境化学试验[M].北京:中国农业出版社,2006:80-86.
    [13]中华人民共和国卫生部.GB/T 20466-2006水中微囊藻毒素的测定[S].北京:中国标准出版社,2006.
    [14]樊洁,邓南圣,刘碧波,等.滇池沉积物中微囊藻毒素的HPLC检测[J].云南环境科学,2005(3):18-20.
    [15]陶保华,胡超群,任春华.弧菌疫苗对斑节对虾和日本对虾免疫预防的作用[J].水产学报, 2000,24(6):564-569.
    [16]凌伟专,黄种持,黄柳婷,等.欧洲鳗鲡池塘养殖水质理化因子周年变化的初步研究[J].福建水产,2007,12(4):20-25.
    [17]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2004,25(3):589-595.
    [18]路学堂.东平湖浮游植物群落结构与驱动因子及蓝藻水华可能性研究[D].济南:山东大学,2013.
    [19]KONG F X, SONG L R. Algal blooms process and its environmental characteristics[M].Beijing:Science press, 2011:4.
    [20]吴阿娜,朱梦杰,汤琳,等.淀山湖蓝藻水华高发期叶绿素a动态及相关环境因子分析[J].湖泊科学,2011,23(1):67-72.
    [21]潘晓洁,常锋毅,沈银武,等.滇池水体中微囊藻毒素含量变化与环境因子的相关性研究[J].湖泊科学,2006,18(6):572-578.
    [22]杨希存,王素凤,鄂学礼,等.洋河水库微囊藻毒素含量与水污染指标的相关性研究[J].环境与健康杂志,2009,26(2):137-138.
    [23]田大军,郑唯韡,韦霄,等.淮河流域某县水体富营养化及水体、底泥微囊藻毒素污染状况研究[J].卫生研究,2011,40(2):158-162.
    [24]姜蕾,黄昌飞,蔡海芸.青草沙水库水体微囊藻毒素的分布特征及与环境因子的关系[J].给水排水,2017,53(8):28-32.
    [25]张杭君,张建英,陈英旭,等.微囊藻毒素含量与自然水体环境影响因子的相关性[J].环境科学,2006(10):1969-1973.
    [26]王经结,杨佳,鲜啟鸣,等.太湖微囊藻毒素时空分布特征及与环境因子的关系[J].湖泊科学, 2011, 23(4):513-519.
    [27]毛敬英.典型富营养化湖泊微囊藻毒素分布特征及主要影响因子差异性分析[D].成都:西南交通大学,2012.
    [28]魏代春,苏婧,陈学民,等.阳澄湖和滆湖微囊藻毒素分布及其与富营养化因子的关系[J].环境工程学报,2014,8(6):2322-2328.
    [29]郑利,谢平,林匡飞,等.武汉莲花湖微囊藻毒素含量变化特征及其影响因素的研究[J].农业环境科学学报,2004,23(6):1053-1057.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700