用户名: 密码: 验证码:
一个水稻黄绿叶突变体ygl15的鉴定和基因定位
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification and Gene Mapping of a Yellow-green Leaf Mutant ygl15 in Rice
  • 作者:魏玲霞 ; 王颖 ; 郭蓉 ; 杜丹 ; 毛英杰 ; 杨超 ; 黄英金 ; 王兆海
  • 英文作者:WEI Lingxia;WANG Ying;GUO Rong;DU Dan;MAO Yingjie;YANG Chao;HUANG Yingjin;WANG Zhaohai;The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education,Jiangxi Agricultural University;College of Bioscience and Bioengineering, Jiangxi Agricultural University;
  • 关键词:水稻 ; 黄绿叶 ; ygl15 ; 遗传分析 ; 基因定位
  • 英文关键词:rice;;yellow-green leaf;;ygl15;;genetic analysis;;gene mapping
  • 中文刊名:HNXB
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:江西农业大学作物生理生态与遗传育种教育部重点实验室;江西农业大学生物科学与工程学院;
  • 出版日期:2018-12-20 07:00
  • 出版单位:核农学报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金项目(31760380);; 江西省教育厅科技计划项目(GJJ170247);; 江西农业大学博士启动基金项目(9232306135)
  • 语种:中文;
  • 页:HNXB201902002
  • 页数:8
  • CN:02
  • ISSN:11-2265/S
  • 分类号:7-14
摘要
由籼稻品系杂交后代中发现1个黄绿叶突变体,命名为ygl15。为揭示突变体ygl15叶色变异机制,对其进行了表型鉴定和基因定位分析。结果表明,突变体ygl15从苗期开始表现为黄绿叶,叶片中的叶绿素和类胡萝卜素含量较野生型显著下降,并最终导致其农艺性状受到影响,表现为株高、有效穗数、单株总粒数和单株实粒数显著下降,穗长、每穗粒数和结实率的变化不显著,千粒重略有提高;基因表达分析表明,突变体ygl15叶片中,叶绿素合成和光合系统相关的基因表达上调,但血红素合成相关的基因表达下调或不变。遗传分析表明,ygl15的突变表型受1对细胞核隐性基因控制。以突变体ygl15和中花11杂交的F_2群体为定位群体,经过初步定位和精细定位,将ygl15基因定位在水稻第3号染色体上的分子标记M08124~M08175之间,物理距离约79 kb。本研究结果为进一步克隆ygl15突变基因和研究基因功能奠定了一定的理论基础。
        A yellow-green leaf mutant, named ygl15, was identified from the hybrid progeny of indica rice lines. Phenotype identification and gene mapping were performed in this study to clarify the leaf color variation mechanism of the ygl15 mutant. The results showed that yellow-green leaves appeared in the ygl15 mutant at the seedling stage, meantime the chlorophyll and carotenoid contents in leaves decreased significantly compared with the wild type. The agronomic characters of the ygl15 mutants were affected. The plant height, the effective panicle number, the total grain number per plant, and the filled grain number per plant decreased. While the panicle length, the grain number per panicle, and the seed setting rate kept stable, and the thousand-grain weight increased slightly. Gene expression analysis suggested that, the expressions were up-regulated for genes related to chlorophyll synthesis and photosynthetic system but down-regulated or stable for genes related to heme synthesis in the leaves of ygl15 mutant. Genetic analysis showed that the mutant phenotype of ygl15 was controlled by a single nuclear recessive gene. Using the F_2 population of the ygl15 mutant crossed with Zhonghua 11, the ygl15 gene was located within a 79 kb region between markers M08124 and M08175 on the third chromosome of rice through the preliminary mapping and fine mapping. This study laid a solid foundation for further cloning ygl15 mutant gene and studying gene function.
引文
[1] 许大全. 光合作用研究进展:从分子机理到绿色革命[J]. 植物生理学报, 2001, 27(2): 97-108
    [2] 顾骏飞,周振翔,李志康,戴琪星,孔祥胜,王志琴,杨建昌. 水稻低叶绿素含量突变对光合作用及产量的影响[J]. 作物学报, 2016, 42(4): 551-560
    [3] Czarnecki O, Grimm B. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria[J]. Journal Experimental Botany, 2012, 63(4): 1675-1687
    [4] 葛常伟. 水稻HD Domain基因WFSL1调控叶绿体发育的分子机理研究[D]. 北京: 中国农业科学院, 2017
    [5] Parks B M, Quail P H. Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis[J]. Plant Cell, 1991, 3(11): 1177-1186
    [6] Sun X, Feng P, Xu X, Guo H, Ma J, Chi W, Lin R, Lu C, Zhang L. A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus[J]. Nature Communications, 2011, 2: 477
    [7] Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling[J]. Science, 2003, 299(5608): 902-906
    [8] 沈圣泉,舒庆尧,吴殿星,陈善福,夏英武. 白化转绿型水稻三系不育系白丰A的选育[J]. 杂交水稻, 2005, 20(5): 10-11
    [9] 舒庆尧,陈善福,吴殿星,沈圣泉,崔海瑞,夏英武. 新型不育系全龙A的选育与研究[J]. 中国农业科学, 2001, 34(4): 349-354
    [10] 董凤高,朱旭东,熊振民,程式华,孙宗修,闵绍楷. 以淡绿叶为标记的籼型光—温敏核不育系M2S的选育[J]. 中国水稻科学, 1995, 9(2): 65-70
    [11] 曹立勇,钱前,朱旭东,曾大力,闵绍楷,熊振民. 紫叶标记籼型光-温敏核不育系中紫S的选育及其配组的杂种优势[J]. 作物学报, 1999, 25(1): 44-49
    [12] Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice[J]. Plant Molecular Biology, 2005, 57(6): 805-818
    [13] Sun C, Liu L, Tang J, Lin A, Zhang F, Fang J, Zhang G, Chu C. RLIN1, encoding a putative coproporphyrinogen Ⅲ oxidase, is involved in lesion initiation in rice[J]. Journal of Genetics and Genomics, 2011, 38(1): 29-37
    [14] Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system[J]. Plant Cell Physiology, 2003, 44(5): 463-472
    [15] Zhang H, Li J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Molecular Biology, 2006, 62(3): 325-337
    [16] Deng X J, Zhang H Q, Wang Y, He F, Liu J L, Xiao X, Shu Z F, Li W, Wang G H, Wang G L. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica)[J]. PLoS One, 2014, 9(6): e99564
    [17] Wang Z, Hong X, Hu K, Wang Y, Wang X, Du S, Li Y, Hu D, Cheng K, An B, Li Y. Impaired magnesium protoporphyrin Ⅸ methyltransferase (ChlM) impedes chlorophyll synthesis and plant growth in rice[J]. Frontiers in Plant Science, 2017, 8: 1694
    [18] Sheng Z, Lv Y, Li W, Luo R, Wei X, Xie L, Jiao G, Shao G, Wang J, Tang S, Hu P. Yellow-Leaf 1 encodes a magnesium-protoporphyrin Ⅸ monomethyl ester cyclase, involved in chlorophyll biosynthesis in rice (Oryza sativa L.)[J]. PLoS One, 2017, 12(5): e177989
    [19] Wang X, Huang R, Quan R. Mutation in Mg-protoporphyrin Ⅸ monomethyl ester cyclase decreases photosynthesis capacity in rice[J]. PLoS One, 2017, 12(1): e171118
    [20] Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions[J]. The Plant Journal, 2013, 74(1): 122-133
    [21] Wang P, Gao J, Wan C, Zhang F, Xu Z, Huang X, Sun X, Deng X. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice[J]. Plant Physiology, 2010, 153(3): 994-1003
    [22] Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis[J]. Plant Physiology, 2007, 145(1): 29-40
    [23] Yang Y, Xu J, Huang L, Leng Y, Dai L, Rao Y, Chen L, Wang Y, Tu Z, Hu J, Ren D, Zhang G, Zhu L, Guo L, Qian Q, Zeng D. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice[J]. Journal of Experimental Botany, 2016, 67(5): 1297-1310
    [24] Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex Ⅱ degradation during senescence in rice[J]. The Plant Journal, 2009, 57(1): 120-131
    [25] Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex Ⅱ and grana degradation during leaf senescence[J]. Plant Cell, 2007, 19(4): 1362-1375
    [26] Chen H, Cheng Z, Ma X, Wu H, Liu Y, Zhou K, Chen Y, Ma W, Bi J, Zhang X, Guo X, Wang J, Lei C, Wu F, Lin Q, Liu Y, Liu L, Jiang L. A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice[J]. Plant Cell Rep, 2013, 32(12): 1855-1867
    [27] Han S H, Sakuraba Y, Koh H J, Paek N C. Leaf variegation in the rice zebra2 mutant is caused by photoperiodic accumulation of tetra-cis-lycopene and singlet oxygen[J]. Molecules and Cells, 2012, 33(1): 87-97
    [28] Chai C, Fang J, Liu Y, Tong H, Gong Y, Wang Y, Liu M, Wang Y, Qian Q, Cheng Z, Chu C. ZEBRA2, encoding a carotenoid isomerase, is involved in photoprotection in rice[J]. Plant Molecular Biology, 2011, 75(3): 211-221
    [29] Fang J, Chai C, Qian Q, Li C, Tang J, Sun L, Huang Z, Guo X, Sun C, Liu M, Zhang Y, Lu Q, Wang Y, Lu C, Han B, Chen F, Cheng Z, Chu C. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice[J]. The Plant Journal, 2008, 54(2): 177-189
    [30] Zhang F, Luo X, Hu B, Wan Y, Xie J. YGL138(t), encoding a putative signal recognition particle 54 kDa protein, is involved in chloroplast development of rice[J]. Rice, 2013, 6(1): 7
    [31] Dong H, Fei G L, Wu C Y, Wu F Q, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H, Wan J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants[J]. Plant Physiology, 2013, 162(4): 1867-1880
    [32] Wang L, Wang C, Wang Y, Niu M, Ren Y, Zhou K, Zhang H, Lin Q, Wu F, Cheng Z, Wang J, Zhang X, Guo X, Jiang L, Lei C, Wang J, Zhu S, Zhao Z, Wan J. WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice[J]. Plant Molecular Biology, 2016, 92(4/5): 581-595
    [33] Wu L, Wu J, Liu Y, Gong X, Xu J, Lin D, Dong Y. The rice pentatricopeptide repeat gene TCD10 is needed for chloroplast development under cold stress[J]. Rice, 2016, 9(1): 67
    [34] Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148: 350-382
    [35] Wang Z, Wang Y, Yang J, Hu K, An B, Deng X, Li Y. Reliable selection and holistic stability evaluation of reference genes for rice under 22 different experimental conditions[J]. Applied Biochemistry and Biotechnology, 2016, 179(5): 753-775
    [36] 王兆海. 水稻类病变相关基因SPL29的克隆和功能研究[D]. 武汉: 武汉大学, 2014
    [37] 方希林,杨漫,王鑫,黄沆,肖楠,贺治洲,王悦. 水稻叶色突变体ygr的遗传分析与基因定位[J]. 核农学报, 2017, 31(11): 2096-2102
    [38] 林添资,孙立亭,景德道,钱华飞,余波,曾生元,李闯,龚红兵. 一个水稻黄绿叶突变体ygl14(t)的鉴定及基因定位[J]. 核农学报, 2018, 32(2): 216-226
    [39] Strand A, Asami T, Alonso J, Ecker J R, Chory J. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX[J]. Nature, 2003, 421(6918): 79-83
    [40] Pontier D, Albrieux C, Joyard J, Lagrange T, Block M A. Knock-out of the magnesium protoporphyrin Ⅸ methyltransferase gene in Arabidopsis. Effects on chloroplast development and on chloroplast-to-nucleus signaling[J]. The Journal of Biological Chemistry, 2007, 282(4): 2297-2304
    [41] Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A. The steady-state level of Mg-protoporphyrin Ⅸ is not a determinant of plastid-to-nucleus signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(39): 15184-15189
    [42] Lv X, Shi Y, Xu X, Wei Y, Wang H, Zhang X, Wu J. Oryza sativa chloroplast signal recognition particle 43 (OscpSRP43) is required for chloroplast development and photosynthesis[J]. PLoS One, 2015, 10(11): e143249
    [43] Li C, Hu Y, Huang R, Ma X, Wang Y, Liao T, Zhong P, Xiao F, Sun C, Xu Z, Deng X, Wang P. Mutation of FdC2 gene encoding a ferredoxin-like protein with C-terminal extension causes yellow-green leaf phenotype in rice[J]. Plant Science, 2015, 238: 127-134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700