用户名: 密码: 验证码:
基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Characteristics of the Water Vapor Transport and Associated Sources under Abnormal Precipitation Conditions in the Source Region of the Yellow River Using FLEXPART
  • 作者:朱丽 ; 刘蓉 ; 王欣 ; 王作亮 ; 文军 ; 赵阳 ; 谢琰 ; 张堂堂
  • 英文作者:ZHU Li;LIU Rong;WANG Xin;WANG Zuoliang;WEN Jun;ZHAO Yang;XIE Yan;ZHANG Tangtang;Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Ecology and Environmental Resources,Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Atmospheric Sciences,Chengdu University of Information Technology;Chinese Academy of Meteorology Sciences;
  • 关键词:黄河源区 ; 降水异常 ; 拉格朗日方法 ; 后向追踪 ; 水汽输
  • 英文关键词:The source region of the Yellow River;;abnormal precipitation;;lagrange method;;backward simulation;;water vapor transport
  • 中文刊名:GYQX
  • 英文刊名:Plateau Meteorology
  • 机构:中国科学院西北生态环境资源研究院/中国科学院寒旱区陆面过程与气候变化重点实验室;中国科学院大学;成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室;中国气象科学研究院;
  • 出版日期:2019-06-28
  • 出版单位:高原气象
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金项目(41530529,91737103)
  • 语种:中文;
  • 页:GYQX201903004
  • 页数:13
  • CN:03
  • ISSN:62-1061/P
  • 分类号:38-50
摘要
依据近10年黄河源区流域气象台站的降水观测资料,提取夏季降水最强月对应的异常特征,利用拉格朗日粒子扩散模式(Flexible Particle Dispersion Model,FLEXPART),针对目标时段开展大气粒子群(气块)的后向模拟,着重分析了流域内降水正负异常状态下的水汽输送特征及其差异,并评估各水汽源地对流域内三类降水的贡献。结果表明,以"S"型跨赤道输送("由阿拉伯海至孟加拉湾和印度半岛再由青藏高原西南侧进入黄河源区")和"几"型输送("由南中国海经长江中下游平原后途径四川盆地再进入黄河源区")为代表的南支路径是2012年7月黄河源区对应的主要水汽输送路径;而以东、西风急流作用下的两条远距离输送("由南中国海至孟加拉湾和印度半岛东北部附近后再经由青藏高原西侧或北侧进入黄河源区"以及"由欧洲平原东部和中亚地区进入青藏高原西侧或北侧后到达黄河源区")为代表的北支路径是2015年7月黄河源区对应的主要水汽输送路径。在对气块后向模拟追踪的同时,对其运动过程中的比湿变化进行了对应经纬度网格的空间平均,变化特征显示出喜马拉雅山南麓、四川盆地周边、孟加拉湾和青藏高原北侧是黄河源区流域降水对应的潜在水汽源地。由定量评估贡献率的结果可知:青藏高原北侧的广大干旱及半干旱草原地区是2015年7月黄河源区降水的最主要水汽来源,其贡献率高达52.9%;而在2012年,三个主要源地的贡献率差异远不及2015年显著;无论对应何种类型的降水,青藏高原西南部和北侧提供了黄河源区主要可供降水的外来水汽。
        Based on the precipitation observation data of meteorological stations in the source region of the Yellow River(SRYR) in the past ten years,July is selected as the largest month of precipitation,the maximum positive and negative abnormal year's corresponding to July are 2012 and 2015 respectively.The Lagrange Flexible Particle Dispersion Model(FLEXPART) is driven by NECP reanalysis data to simulate the backward trajectories of target particles in these two months.The characteristics and differences of water vapor transport under abnormal conditions are emphatically analyzed,and the contribution rate of each moisture source to the regional rainfall is calculated quantitatively.The results show that,in July 2012,the moisture transportation to the SRYR is mainly conducted by South Branch which contains two routes entering the SRYR from the southern side of the Qinghai-Tibetan Plateau(QTP) :one is the trans-equatorial transport path,that is to say,the Somali jet carries moisture from the Arabian Sea and finally enters the SRYR by way of the Indian Peninsula and Bay of Bengal;the other is that particles carry moisture from the South China Sea and finally enters the SRYR by way of the Sichuan Basin.On the contrary,the North Branch which means moisture enters the SRYR from the Western or northern side of the QTP plays a dominant role in July 2015,including two typical paths as well:one is that the Easterly jet carries the moisture from the South China Sea and finally enters the SRYR by the Bay of Bengal and Indian Peninsula;the other is that the Westerly Jet carries moisture from the northern Africa or eastern European Plain and finally enters the SRYR,via Central Asia.The characteristics of specific humidity variation during the movement of particles show that the southern foot of the Himalayas,the Sichuan Basin,the Bay of Bengal and the northern Tibetan Plateau are potential moisture sources for precipitation in the SRYR.Moreover,the estimation of moisture sources contributions to the precipitation in SRYR shows that:the arid and semi-arid grassland areas on the northern side of the TP are main sources of precipitation for the SRYR in July of dry year.The contribution rate is 52.9%,which is much higher than the other four potential moisture sources.While the contributions of the three main sources in the wet year are far less significant than those in the dry year.No matter what type of precipitation,the southwestern QTP and the northern side of the QTP provide the main external water vapor for the main precipitation in the SRYR.
引文
Dirmeyer P A,Brubaker K L,1999.Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993[J].Journal of Geophysical Research Atmospheres,104(D16):19383-19397.DOI:10.1029/1999JD900222.
    Dirmeyer P A,Brubaker K L,2007.Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor[J].Journal of Hydrometeorology,8(1):20.DOI:10.1175/JHM557.1.
    Gimeno L,Nieto R,Trigo S M,et al,2010.Where does the Iberian Peninsula moisture come from?An answer based on a Lagrangian approach[J].Journal of Hydrometeorology,11(2):421-436.DOI:10.1175/2009jhm1182.1.
    Gimeno L,Stohl A,Trigo R M,et al,2012.Oceanic and terrestrial sources of continental precipitation[J].Reviews of Geophysics,50(4):RG4003.DOI:10.1029/2012RG000389.
    Gómez-Hernández M,Drumond A,Gimeno L,et al,2013.Variability of moisture sources in the Mediterranean region during the period1980-2000[J].Water Resources Research,49(10):6781-6794.DOI:10.1002/wrcr.20538.
    Hu Y,Maskey S,Uhlenbrook S,et al,2011.Streamflow trends and climate linkages in the source region of the Yellow River,China[J].Hydrological Processes,25(22):3399-3411.DOI:10.1002/hyp.8069.
    Iqbal M,Wen J,Wang S,et al,2018.Variations of precipitation characteristics during the period 1960-2014 in the source region of the Yellow River,China[J].Journal of Arid Land,9(3):1-14.DOI:10.1007/s40333-018-0008-z.
    Jiang Z,Jiang S,Shi Y,et al,2017.Impact of moisture source variation on decadal-scale changes of precipitation in North China from1951 to 2010[J].Journal of Geophysical Research,122(2):600-613.DOI:10.1002/2016JD025795.
    Reale O,Feudale L,Turato B,2001.Evaporative moisture sources during a sequence of floods in the Mediterranean region[J].Geophysical Research Letters,28(10):2085-2088.
    Schneider E K,Kirtman B P,Lindzen R S,1999.Tropospheric water vapor and climate sensitivity[J].Journal of the Atmospheric Sciences,56(11):1649-1654.
    Sodemann H,Masson-Delmotte V,Schwierz C,et al,2008.Interannual variability of greenland winter precipitation sources:2.Effects of North Atlantic Oscillation variability on stable isotopes in precipitation[J].Journal of Geophysical Research Atmospheres,113(D12):D12111.DOI:10.1029/2007JD009416.
    Stohl A,James P,2004.A lagrangian analysis of the atmospheric branch of the global water cycle.Part I:Method description,validation,and demonstration for the August 2002 flooding in central Europe[J].Journal of Hydrometeorology,5(4):656-678.
    Stohl A,James P,2005.A Lagrangian analysis of the atmospheric branch of the global water cycle.Part II:Moisture transports between earth's ocean basins and river catchments[J].Journal of Hydrometeorology,6(6):961-984.DOI:10.1175/JHM470.1.
    Sun B,Wang H,2014a.Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART[J].Journal of Climate,27(6):2457-2474.DOI:10.1175/JCLI-D-13-00517.1.
    Sun B,Wang H,2014b.Analysis of the major atmospheric moisture sources affecting three sub-regions of East China[J].International Journal of Climatology,35(9):2243-2257.DOI:10.1002/joc.4145.
    Trenberth K E,1998.Atmospheric moisture residence times and cycling:Implications for rainfall rates and climate change[J].Climatic change,39(4):667-694.
    Zhou H,Zhao X,Tang Y,et al,2005.Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers,China[J].Grassland Science,51(3):191-203.
    陈斌,徐祥德,杨帅,等,2012.夏季青藏高原地区近地层水汽进入平流层的特征分析[J].地球物理学报,55(2):406-414.
    陈斌,徐祥德,施晓晖,2009a.2005年夏季亚洲季风区下平流层水汽的对流源区[J].自然科学进展,19(10):1094-1099.
    陈斌,徐祥德,施晓晖,2011.拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区[J].气象学报,69(5):810-818.
    陈斌,2009b.青藏高原及其周边区域夏季上对流层水汽变化和输送特征研究[D].北京:中国气象科学研究院,1-166.
    陈丹,周长艳,熊光明,等,2018.近53年四川盆地夏季暴雨变化特征分析[J].高原气象,37(1):197-206.DOI:10.7522/j.issn.1000-0534.2017.00022.
    敬文琪,崔园园,刘瑞霞,等,2017.影响长江中下游夏季降水的青藏高原水汽抽吸作用和水汽路径的定量化研究[J].高原气象,36(4):900-911.DOI:10.7522/j.issn.1000-0534.2016.00084.
    李进,李栋梁,张杰,2012.黄河流域冬、夏季水汽输送及收支特征[J].高原气象,31(2):342-350.
    刘希胜,李其江,段水强,等,2016.黄河源径流演变特征及其对降水的响应[J].中国沙漠,36(6):1721-1730.
    乔世娇,袁飞,王妍,等,2015.黄河源区近50a极端气候变化趋势分析[J].人民黄河,37(5):20-23.
    权晨,2014.三江源区地-气水汽交换及输送的气候效应研究[D].南京:南京信息工程大学,1-67.
    孙卫国,程炳岩,李荣,2009.黄河源区径流量与区域气候变化的多时间尺度相关[J].地理学报,64(1):117-127.
    王可丽,程国栋,丁永建,2006.黄河、长江源区降水变化的水汽输送和环流特征[J].冰川冻土,28(1):8-14.
    谢欣汝,游庆龙,保云涛,2018.基于多源数据的青藏高原夏季降水与水汽输送的联系[J].高原气象,37(1):78-92.DOI:10.7522/j.issn.1000-0534.2017.00030.
    许建玉,王慧娟,李宏毅,2014.夏季青藏高原地区水汽收支的初步模拟分析[J].高原气象,33(5):1173-1181.DOI:10.7522/j.issn.1000-0534.2013.00117.
    周顺武,吴萍,王传辉,2011.青藏高原夏季上空水汽含量演变特征及其与降水的关系[J].地理学报,66(11):1466-1478.
    周长艳,唐信英,李跃清,2012.青藏高原及周边地区水汽、水汽输送相关研究综述[J].高原山地气象研究,32(3):76-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700