用户名: 密码: 验证码:
采煤塌陷影响下土壤含水量变化对柠条气孔导度、蒸腾与光合作用速率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of soil water content on stomatal conductance, transpiration, and photosynthetic rate of Caragana korshinskii under the influence of coal mining subsidence
  • 作者:刘英 ; 雷少刚 ; 程林森 ; 程伟 ; 卞正富
  • 英文作者:LIU Ying;LEI Shaogang;CHENG Linsen;CHENG Wei;BIAN Zhengfu;School of Environment Science and Spatial Information,China University of Mining and Technology;
  • 关键词:干旱区 ; 采煤塌陷 ; 气孔导度 ; 胞间CO2浓度 ; 干旱胁迫
  • 英文关键词:arid area;;coal mining subsidence;;stomatal conductance;;intercellular CO2 concentration;;drought stress
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国矿业大学环境与测绘学院;
  • 出版日期:2018-01-26 09:21
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家重点研发计划课题(2016YFC0501107);; 国家自然科学基金重点项目(U1361214);; 国家重点基础研究发展计划(973)课题(2013CB227904)
  • 语种:中文;
  • 页:STXB201809008
  • 页数:9
  • CN:09
  • ISSN:11-2031/Q
  • 分类号:81-89
摘要
采煤塌陷引起的土壤环境因子的变化对矿区植物生长的影响越来越受到人们的关注,气孔导度、蒸腾与光合作用作为环境变化响应的敏感因子,研究植物气孔导度、蒸腾与光合作用的变化是揭示荒漠矿区自然环境变化及其规律的重要手段之一。研究采煤塌陷条件下植物光合生理的变化是探究煤炭开采对植物叶片水分蒸腾散失和CO_2同化速率影响的关键环节,是探讨采煤塌陷影响下植物能量与水分交换动态的基础,而采煤矿区植物叶片气孔导度、蒸腾与光合作用速率对采煤塌陷影响下土壤含水量变化的响应如何尚不清楚。选取神东煤田大柳塔矿区52302工作面为实验场地,以生态修复物种柠条为研究对象,对采煤塌陷区和对照区柠条叶片气孔导度、蒸腾和光合作用速率以及土壤体积含水量进行监测,分析了采煤塌陷条件下土壤含水量的变化以及其对柠条叶片气孔导度、蒸腾与光合作用速率的影响。结果显示:(1)煤炭井工开采在地表形成大量裂缝,破坏了土体结构,潜水位埋深降低,土壤含水量均低于沉陷初期,相对于对照区,硬梁和风沙塌陷区土壤含水量分别降低了18.61%、21.12%;(2)柠条叶片气孔导度、蒸腾和光合作用速率均与土壤含水量呈正相关关系;煤炭开采沉陷增加了地表水分散失,加剧了土壤水分胁迫程度,为了减少蒸腾导致的水分散失,柠条叶片气孔阻力增加,从而气孔导度降低,阻碍了光合作用CO_2的供应,从而导致柠条叶片光合作用速率的降低,蒸腾速率也显著降低。
        Increased attention has been paid to the influence of environmental factors caused by coal mining subsidence on plant physiology. Stomatal conductance,transpiration and rate of photosynthesis are factors sensitive to the environment,therefore it is important to study of the change in stomatal conductance,transpiration,and photosynthetic rate to reveal the change of natural environment in the mining area. Investigation of the changes in stomatal conductance,transpiration,and photosynthetic rate under the condition of coal mining subsidence is a key step to explore the effects of coal mining on water transpiration and CO_2 assimilation rate. It is concluded that the relationships between stomatal conductance,transpiration,and photosynthetic rate and environmental factors in coal mining subsidence areas are the basis of the relationship between energy and water exchange under the influence of coal mining subsidence. However,the responses of stomatal conductance,transpiration,and photosynthetic rate to the change in soil water content are not clear in coal mining subsidence areas. The52302 working face of the Daliuta mining area was selected as the experimental site,with Caragana korshinskii as the research object. Stomatal conductance,transpiration and rate of photosynthesis in C. korshinskii leaves and soil water content were monitored in a coal mining subsidence area and a non-collapse area. The characteristics of the responses of stomatal conductance,transpiration,and photosynthetic rates of C. korshinskii leaves to soil water content were analyzed. The results show that:( 1) Coal mining resulted in surface cracking,soil structure damage and diving depth reduction. Soil water content was lower than that in the early stage of the subsidence. Compared with the control area,the soil moisture contents of the hard ground and the aeolian sandy land subsidence area were decreased by 18.61% and 21.12%,respectively.( 2)The stomatal conductance,transpiration,and photosynthetic rate of C. korshinskii leaves were positively correlated with soil water content. Subsidence of coal mining area increased the loss of surface water and intensified the degree of soil water stress. In order to reduce transpiration caused by water loss,C. korshinskii leaf stomatal resistance increased,stomatal conductance decreased,and CO_2 supply for photosynthesis was hindered,which led to the reduced C. korshinskii leaf photosynthetic and transpiration rates.
引文
[1]卞正富.我国煤矿区土地复垦与生态重建研究.资源·产业,2005,7(2):18-24.
    [2]张发旺,侯新伟,韩占涛,杨会峰,宋亚欣.采煤塌陷对土壤质量的影响效应及保护技术.地理与地理信息科学,2003,19(3):67-70.
    [3]雷少刚,卞正富.西部干旱区煤炭开采环境影响研究.生态学报,2014,34(11):2837-2843.
    [4]Ristovic'I.Environmental risks to air,water and soil due to the coal mining process//Me2ko G,Dimitrijevic'D,Fields C,eds.Understanding and Managing Threats to the Environment in South Eastern Europe.NATO Science for Peace and Security Series C:Environmental Security,vol 2.Dordrecht:Springer,2011:251-264.
    [5]杜涛,毕银丽,邹慧,郑娇龙,刘生.地表裂缝对沙柳根际微生物和酶活性的影响.煤炭学报,2013,38(12):2221-2226.
    [6]丁玉龙,雷少刚,卞正富,郄晨龙.开采沉陷区四合木根系抗变形能力分析.中国矿业大学学报,2013,42(6):970-974,981-981.
    [7]Pandey B,Agrawal M,Singh S.Coal mining activities change plant community structure due to air pollution and soil degradation.Ecotoxicology,2014,23(8):1474-1483.
    [8]Mukhopadhyay S,Maiti S K,Masto R E.Use of Reclaimed Mine Soil Index(RMSI)for screening of tree species for reclamation of coal mine degraded land.Ecological Engineering,2013,57:133-142.
    [9]钱者东,秦卫华,沈明霞,杨昉婧.毛乌素沙地煤矿开采对植被景观的影响.水土保持通报,2014,34(5):299-303.
    [10]吴立新,马保东,刘善军.基于SPOT卫星NDVI数据的神东矿区植被覆盖动态变化分析.煤炭学报,2009,34(9):1217-1222.
    [11]Huang Y,Tian F,Wang Y J,Wang M,Hu Z L.Effect of coal mining on vegetation disturbance and associated carbon loss.Environmental Earth Sciences,2015,73(5):2329-2342.
    [12]Ranjbarfordoei A,Samson R,Van Damme P,Lemeur R.Effects of drought stress induced by polyethylene glycol on pigment content and photosynthetic gas exchange of Pistacia Khinjuk and P.Mutica.Photosynthetica,2000,38(3):443-447.
    [13]Lotter D,Valentine A J,Van Garderen E A,Tadross M.Physiological responses of a fynbos legume,aspalathus linearis to drought stress.South African Journal of Botany,2014,94(3):218-223.
    [14]Yordanov I,Velikova V,Tsonev T.Plant responses to drought,acclimation,and stress tolerance.Photosynthetica,2000,38(2):171-186.
    [15]Miyashita K,Tanakamaru S,Maitani T,Kimura K.Recovery responses of photosynthesis,transpiration,and stomatal conductance in kidney bean following drought stress.Environmental and Experimental Botany,2005,53(2):205-214.
    [16]兰伯斯,祭平,庞斯.植物生理生态学.张国平,周伟军,译.杭州:浙江大学出版社,2005:18-18.
    [17]Medrano H,Escalona J M,Bota J,Gulías J,Flexas J.Regulation of photosynthesis of C3 plants in response to progressive drought:Stomatal conductance as a reference parameter.Annals of Botany,2002,89(7):895-905.
    [18]张大龙,常毅博,李建明,张中典,潘铜华,杜清洁,郑刚.大棚甜瓜蒸腾规律及其影响因子.生态学报,2014,34(4):953-962.
    [19]郎莹,汪明.春、夏季土壤水分对连翘光合作用的影响.生态学报,2015,35(9):3043-3051.
    [20]何国清,杨伦.矿山开采沉陷学.徐州:中国矿业大学出版社,1991.
    [21]Bian Z F,Lei S G,Inyang H I,Chang L Q,Zhang R C,Zhou C J,He X.Integrated method of RS and GPR for monitoring the changes in the soil moisture and groundwater environment due to underground coal mining.Environmental Geology,2009,57(1):131-142.
    [22]邹慧.神东风积沙区煤炭开采对土壤水分运移规律的影响[D].北京:中国矿业大学(北京),2014.
    [23]李王成.石羊河流域中游土壤水分运动规律试验研究[D].北京:中国农业大学,2007.
    [24]王力,卫三平,张青峰,王全九,李世清.榆神府矿区土壤-植被-大气系统中水分的稳定性同位素特征.煤炭学报,2010,35(8):1347-1353.
    [25]王力,卫三平,王全九.榆神府煤田开采对地下水和植被的影响.煤炭学报,2008,33(12):1408-1414.
    [26]唐凤德,武耀祥,韩士杰,张军辉.长白山阔叶红松林叶片气孔导度与环境因子的关系.生态学报,2008,28(11):5649-5655.
    [27]杨泽粟,张强,郝小翠,阳伏林.半干旱雨养地区春小麦气孔导度和胞间CO2浓度对环境因子的响应.科学技术与工程,2014,14(33):20-27.
    [28]Elsharkaway M A,Cock J H.Water Use Efficiency of Cassava.I.Effects of air humidity and water stress on stomatal conductance and gas exchange.Crop Science,1984,24(3):497-502.
    [29]左应梅,陈秋波,邓权权,唐建,罗海伟,巫铁凯,杨重法.土壤水分、光照和空气湿度对木薯气孔导度的影响.生态学杂志,2011,30(4):689-693.
    [30]张淑勇,夏江宝,张光灿,周泽福.黄刺玫叶片光合生理参数的土壤水分阈值响应及其生产力分级.生态学报,2014,34(10):2519-2528.
    [31]卢从明,张其德,匡廷云,王忠,高煜珠.水分胁迫抑制水稻光合作用的机理.作物学报,1994,20(5):601-606.
    [32]吴大千,徐飞,郭卫华,王仁卿,张治国.中国北方城市常见绿化植物夏季气孔导度影响因素及模型比较.生态学报,2007,27(10):4141-4148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700