用户名: 密码: 验证码:
北京市气态元素汞浓度的时间变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal Variation Characteristics of Gaseous Elemental Mercury Concentrations in the Beijing Area
  • 作者:鹿亚飞 ; 周晓成 ; 刘红 ; 孙凤霞 ; 石宏宇 ; 陈志 ; 崔月菊 ; 李营
  • 英文作者:LU Ya-fei;ZHOU Xiao-cheng;LIU Hong;SUN Feng-xia;SHI Hong-yu;CHEN Zhi;CUI Yue-ju;LI Ying;CEA Key Laboratory of Earthquake Prediction (Institute of Earthquake Forecasting),China Earthquake Administration;
  • 关键词:北京市 ; 气态元素汞 ; 季节变化 ; PM2.5 ; 人为源
  • 英文关键词:Beijing;;Gaseous elemental mercury(GEM);;seasonal variation;;PM2.5;;anthropogenic sources
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:中国地震局地震预测研究所地震预测重点实验室;
  • 出版日期:2018-07-10
  • 出版单位:矿物岩石地球化学通报
  • 年:2018
  • 期:v.37
  • 基金:中国地震局地震预测研究所基本科研业务费支持项目(2017IES010205);; 国家自然科学基金青年基金项目(41673106)
  • 语种:中文;
  • 页:KYDH201804008
  • 页数:8
  • CN:04
  • ISSN:52-1102/P
  • 分类号:85-90+97+241
摘要
2013年9月至2016年8月对北京市气态元素汞(GEM)进行了连续监测并分析了其含量变化特征。结果显示,监测期间大气GEM总平均浓度为(2.77±1.27)ng/m~3,高于北半球背景值浓度,且其季节变化呈现多样性。2013/9~2014/8和2015/9~2016/8年大气GEM浓度秋冬季节较高,夏季较低;2014/9~2015/8年度则为冬季最低,主要是与大气汞的来源以及季风的风向、路径和风速明显相关。大气GEM浓度日变化为夜间高、白天低。大气GEM浓度与NO_2、SO_2、PM_(2.5)等大气污染物浓度呈明显正相关,雾霾气象条件下细颗粒污染物(PM_(2.5))在低空累积及逆温气象条件易导致大气GEM浓度升高。2004年以来,北京市大气GEM浓度降低的现象与工业燃煤消费总量降低的趋势相同,表明北京市对燃煤等人为排放源的控制在很大程度上降低了大气汞浓度。
        Gaseous elemental mercury( GEM) concentrations in the Beijing area had been continuously monitored in a period from September 2013 to August 2016 and their temporal variation characteristics have been analyzed. The results show that the average GEM concentration of the atmosphere in the monitoring period is 2. 77±1. 27 ng/m3,higher than the reported background concentration of the atmosphere in the northern hemisphere. The seasonal variation of the GEM concentrations in the atmosphere shows obvious polymorphism. Based on records of the GEM concentrations of the atmosphere in the Beijing area during periods of 2013/9-2014/8 and 2015/9-2016/8,the GEM contents in autumn and winter are generally higher than those in summer. However,the lowest GEM concentration was exhibited in the winter of a period of2014/9-2015/8. This is mainly associated with not only the source of atmospheric Hg,but also the direction,path and speed of the monsoon. The GEM concentrations of the atmosphere in the night were higher than those in the daytime. The GEM concentrations had obviously positive correlations with concentrations of pollutants including NO2、SO2 and PM2. 5 in the atmosphere. Under the meteorological conditions of haze,the fine particle pollutant( PM2. 5) was accumulated at low altitude. Under adverse weather conditions,the GEM contents of the atmosphere will be easily increased. Since 2004,the decrease trend of the atmospheric GEM contents in the Beijing area agrees well with the that of total amount of industrial coal consumption,indicating that the Beijing's control of anthropogenic sources of emissions,such as coal burning,has largely reduced atmospheric mercury concentrations.
引文
Bo D D,Cheng J P,Xie H Y,Zhao W C,Wei Y Q,Chen X J.2016.Mercury concentration in fine atmospheric particles during haze and non-haze days in Shanghai,China.Atmospheric Pollution Research,7(2):348-354
    Fang F M,Wang Q C,Li J F.2004.Urban environmental mercury in Changchun,a metropolitan city in northeastern China:Source,cycle,and fate.Science of the Total Environment,330(1-3):159-170
    Kim S H,Han Y J,Holsen T M,Yi S M.2009.Characteristics of atmospheric speciated mercury concentrations(TGM,Hg(II)and Hg(p))in Seoul,Korea.Atmospheric Environment,43(20):3267-3274
    Liu S L,Nadim F,Perkins C,Carley R J,Hoag G E,Lin Y H,Chen LT.2002.Atmospheric mercury monitoring survey in Beijing,China.Chemosphere,48(1):97-107
    Pacyna E G,Pacyna J M,Sundseth K,Munthe J,Kindbom K,Wilson S,Steenhuisen F,Maxson P.2010.Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020.Atmospheric Environment,44(20):2487-2499
    Pyta H,Rosik-Dulewska C,Czaplicka M.2009.Speciation of ambient mercury in the Upper Silesia Region,Poland.Water,Air,and Soil Pollution,197(1-4):233-240
    Schroeder W H,Munthe J.1998.Atmospheric mercury-an overview.Atmospheric Environment,32(5):809-822
    Slemr F,Ebinghaus R,Brenninkmeijer C A M,Hermann M,Kock HH,Martinsson B G,Schuck T,Sprung D,van Velthoven P,Zahn A,Ziereis H.2008.Gaseous mercury distribution in the upper troposphere and lower stratosphere observed onboard the CARIBIC passenger aircraft.Atmospheric Chemistry and Physics Discussions,8(5):18651-18688
    Sprovieri F,Pirrone N,Ebinghaus R,Kock H,Dommergue A.2010.Areview of worldwide atmospheric mercury measurements.Atmospheric Chemistry and Physics,10(17):8245-8265
    United Nations Environment Programme(UNEP).2013.Global Mercury Assessment 2013:Sources,Emissions,Releases and Environmental Transport.Geneva,Switzerland:UNEP Chemicals Branch,2013
    Wang Z S,Li Y T,Chen T,Zhang D W,Sun F,Wei Q,Dong X,Sun R W,Huan N,Pan L B.2015.Ground-level ozone in urban Beijing over a 1-year period:Temporal variations and relationship to atmospheric oxidation.Atmospheric Research,164-165:110-117
    Yang Y K,Chen H,Wang D Y.2009.Spatial and temporal distribution of gaseous elemental mercury in Chongqing,China.Environmental Monitoring and Assessment,156(1-4):479-489
    Zhang L,Wang S X,Wang L,Hao J M.2013.Atmospheric mercury concentration and chemical speciation at a rural site in Beijing,China:Implications of mercury emission sources.Atmospheric Chemistry and Physics,13(20):10505-10516
    Zhang Y X,Jacob D J,Horowitz H M,Chen L,Amos H M,Krabbenhoft D P,Slemr F,Louis V L St,Sunderland E M.2016.Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.Proceedings of the National A-cademy of Sciences of the United States of America,113(3):526-531
    Zhou J,Feng X B,Liu H Y,Zhang H,Fu X W,Bao Z D,Wang X,Zhang Y P.2013.Examination of total mercury inputs by precipitation and litterfall in a remote upland forest of southwestern China.Atmospheric Environment,81:364-372
    Zhou X C,Du J G,Wang C Y,Liu S J.2010.Source apportionment and distribution of atmospheric mercury in urban Beijing,China.Chinese Journal of Geochemistry,29(2):182-190
    Zhu J,Wang T,Talbot R,Mao H,Hall C B,Yang X,Fu C,Zhuang B,Li S,Han Y,Huang X.2012.Characteristics of atmospheric total gaseous mercury(TGM)observed in urban Nanjing,China.Atmospheric Chemistry and Physics,12(24):12103-12118
    北京市统计局.2006-2017.北京市统计年鉴.北京:中国统计出版社
    陈乐恬,刘俊华,佟玉芹,林玉环,王文华,Liu S,Carloy R J.2000.北京地区大气中汞污染状况的初步调查.环境化学,19(4):357-361
    狄一安,杨勇杰,马志强,张乐坚,于跃,任立军,郭婧,邵伟珂.2012.北京市城区北部大气气态汞的特征分析.环境化学,31(10):1656-1657
    冯新斌,仇广乐,付学吾,何天容,李平,王少锋.2009.环境汞污染.化学进展,21(2):436-457
    付学吾,冯新斌.2015.贵阳市2001/2002和2009/2010两个年度大气气态总汞浓度变化特征及其对区域大气汞排放强度的指示意义.矿物岩石地球化学通报,34(2):242-249
    高炜,支国瑞,薛志钢,王书肖.2013.1980-2007年我国燃煤大气汞、铅、砷排放趋势分析.环境科学研究,26(8):822-828
    贾佳,郭秀锐,程水源.2016.APEC期间北京市PM2.5特征模拟分析及污染控制措施评估.中国环境科学,36(8):2337-2346
    李舒,高伟,王书肖,张磊,李智坚,王龙,郝吉明.2016.上海崇明地区大气分形态汞污染特征.环境科学,37(9):3290-3299
    李文涛,高庆先,刘俊蓉,李亮,高文康,苏布达.2015.APEC期间北京空气质量改善对比分析.环境科学,36(12):4340-4347
    孟丽红,张敏,韩素琴,刘丽娟.2011.东莞市夏季大气边界层风、温场结构与特征研究.环境工程,29(S1):385-388
    邵平,王莉莉,安俊琳,周彦丽,王跃思.2012.河北张家口市大气污染观测研究.环境科学,33(8):2538-2550
    宋从波,李瑞芃,何建军,吴琳,毛洪钧.2016.河北廊坊市区大气中NO、NO2和O3污染特征研究.中国环境科学,36(10):2903-2912
    涂敏杰,卢志明.2005.对流边界层湍流特性的数值研究.力学季刊,26(3):354-360
    王珊珊,于瑞莲,赵莉斯,徐玲玲,胡恭任.2017.宁波市不同形态大气汞含量特征及来源分析.环境化学,36(2):274-281
    吴莹,吉东生,宋涛,朱彬,王跃思.2011.夏秋季北京及河北三城市的大气污染联合观测研究.环境科学,32(9):2741-2749
    杨卫芬,银燕,魏玉香,陈魁.2010.霾天气下南京PM2.5中金属元素污染特征及来源分析.中国环境科学,30(1):12-17
    张玉卿,刘汝海,崔雪晴,周建平,王艳.2014.青岛霾天气下大气汞的污染特征分析.中国环境科学,34(8):1905-1911
    朱万泽,付学吾,冯新斌,Lu J Y.2007.青藏高原东南缘贡嘎山地区大气总汞时间序列分析及其影响因子.生态学报,27(9):3727-3737

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700