用户名: 密码: 验证码:
基于高速动态显微测试的气泡矿化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on bubbles mineralization based on high-speed dynamic microscopic test
  • 作者:张凡凡 ; 许亚军 ; 闫小康 ; 曹亦俊 ; 刘刚
  • 英文作者:ZHANG Fanfan;XU Yajun;YAN Xiaokang;CAO Yijun;LIU Gang;School of Chemical Engineering,China University of Mining & Technology;
  • 关键词:颗粒 ; 气泡 ; 滑动速度 ; 相互作用 ; 碰撞 ; 黏附
  • 英文关键词:particle;;bubble;;sliding speed;;interaction;;collision;;adhesion
  • 中文刊名:ZGKD
  • 英文刊名:Journal of China University of Mining & Technology
  • 机构:中国矿业大学化工学院;
  • 出版日期:2016-11-15
  • 出版单位:中国矿业大学学报
  • 年:2016
  • 期:v.45;No.213
  • 基金:国家自然科学基金项目(51404264,51574240);; 中央高校基本科研业务费专项资金(2014QNB16);; 国土资源部公益性行业科研专项(201511071-3)
  • 语种:中文;
  • 页:ZGKD201606020
  • 页数:7
  • CN:06
  • ISSN:32-1152/TD
  • 分类号:171-177
摘要
研究使用改性后具有疏水性表面的玻璃微珠模拟矿物颗粒,利用高速动态摄像系统测量了颗粒与气泡间的碰撞、黏附,以及气泡液膜破裂,形成气-液-固三相体的微观过程.对颗粒滑动速度的分析表明:颗粒在接触气泡表面之前,速度逐渐增加直至达到沉降末速;当颗粒接触到气泡表面时,颗粒在两者间的液膜中滑动,表现为逐渐变慢;滑动过程中气泡液膜发生破裂,气-液-固三相接触,视觉上表现为颗粒突然陷入气泡表层,数值上表现为滑动速度出现一个跳跃点,即速度突然增大后再立即恢复到一定数值,随后在三相界面中继续滑动直至滞止在气泡底端.本文还探讨了不同药剂体系中颗粒在气泡表面的滑动行为.
        Modified glass beads with hydrophobic surface were used to simulate mineral particles in this paper.The interaction between bubbles and particles in mineralization were measured by a high-speed dynamic video microscopy system.Then,the collision and adhesion between hydrophobic particles and bubbles,the process of bubble film rupture,and the formation of gas-liquid-solid three phase boundary were observed.Analysis on sliding velocity of particles show that before the contact between the particle and bubble,the velocity grows steadily till the terminal velocity.When the particle contacts the bubble surface,particle slides into the liquid film and the sliding speed gradually slows down.In the sliding process,bubble film ruptures,then gas,liquid and solid contacts with each other.Visually,the particle plunges into the bubble surface.Numerically,ajump point appears on the sliding velocity curve,namely the speed first increases sharply and then falls back quickly to a certain value.After that the particle continues to slide in the three-phase combination until it stops at the bubble bottom.The particle sliding on the bubble surface in different solution systems were also explored.
引文
[1]YOON R H.The role of hydrodynamic and surface forces in bubble-particle interaction[J].International Journal of Mineral Processing,2000,58(1):129-143.
    [2]RAHMAN A,AHMAD K D,MAHMOUD A,et al.Nano-microbubble flotation of fine and ultrafine chalcopyrite particles[J].International Journal of Mining Science and Technology,2014,24(4):559-566.
    [3]马亮.浮选过程中含钙矿物颗粒与气泡的相互作用研究[D].长沙:中南大学资源加工与生物工程学院,2011:6-8.
    [4]SCHELUDKO A,TOSHEV B V,BOJADJIEV D T.Attachment of particles to a liquid surface(capillary theory of flotation)[J].Journal of the Chemical Society,Faraday Transactions 1:Physical Chemistry in Condensed Phases,1976,72:2815-2828.
    [5]DAI Z,FORNASIERO D,RALSTON J.Particle-bubble collision models-a review[J].Advances in Colloid and Interface Science,2000,85(2):231-256.
    [6]MIETTINEN T,RALSTON J,FORNASIERO D.The limits of fine particle flotation[J].Minerals Engineering,2010,23(5):420-437.
    [7]NGUYEN A V,EVANS G M,NALASKOWSKI J,et al.Hydrodynamic interaction between an air bubble and a particle:atomic force microscopy measurements[J].Experimental Thermal and Fluid Science,2004,28(5):387-394.
    [8]BRADY M R,TELIONIS D P,VLACHOS P P,et al.Evaluation of multiphase flotation models in grid turbulence via particle image velocimetry[J].International Journal of Mineral Processing,2006,80(2):133-143.
    [9]KOH P T L,SMITH L K.The effect of stirring speed and induction time on flotation[J].Minerals Engineering,2011,24(5):442-448.
    [10]郭晓婷.基于高速动态摄像技术的弹性管束振动测试研究[D].济南:山东大学机械工程学院,2011:4-6.
    [11]王静.基于高速动态摄像技术的芦竹收割机切割试验系统的研究[D].武汉:华中农业大学工程技术学院,2006:6-8.
    [12]郭文庆.基于高速动态摄像技术脉冲激光水介导牛胫骨消融的实验研究[D].福州:福建师范大学光电与信息工程学院,2013:18-19.
    [13]田晶晶.基于高速动态摄像的引线成形过程分析[D].长沙:中南大学机电工程学院,2016:7-8.
    [14]MAHNKE J,SCHULZE H J,STCKELHUBER K W,et al.Rupture of thin wetting films on hydrophobic surfaces:Part I:methylated glass surfaces[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,157(1):1-9.
    [15]WANG W,ZHOU Z,NANDAKUMAR K,et al.Attachment of individual particles to a stationary air bubble in model systems[J].International Journal of Mineral Processing,2003,68(1):47-69.
    [16]WANG W,ZHOU Z,NANDAKUMAR K,et al.Effect of surface mobility on the particle sliding along a bubble or a solid sphere[J].Journal of Colloid and Interface Science,2003,259(1):81-88.
    [17]任浏祎.细粒锡石颗粒-气泡间相互作用及其对浮选的影响[D].长沙:中南大学资源加工与生物工程学院,2012:59-83.
    [18]覃文庆,王佩佩,任浏祎,等.颗粒气泡的匹配关系对细粒锡石浮选的影响[J].中国矿业大学学报,2012,41(3):420-424.QIN Wenqing,WANG Peipei,REN Liuyi,et al.Effect of matching relationship between particles and bubbles on the flotation of fine cassiterite[J].Journal of China University of Mining&Technology,2012,41(3):420-424.
    [19]VERRELLI D I,KOH P T L,NGUYEN A V.Particle-bubble interaction and attachment in flotation[J].Chemical Engineering Science,2011,66(23):5910-5921.
    [20]NGUYEN A V,EVANS G M.Attachment interaction between air bubbles and particles in froth flotation[J].Experimental Thermal and Fluid Science,2004,28(5):381-385.
    [21]NGUYEN A V,EVANS G M.Movement of fine particles on an air bubble surface studied using highspeed video microscopy[J].Journal of Colloid and Interface Science,2004,273(1):271-277.
    [22]JOHANSSON B,PUGH R,ALEXANDROVA L.Flotation de-inking studies using model hydrophobic particles and non-ionic dispersants[J].Colloids and Surfaces A:Physicochemical&Engineering Aspect,2000,170(2/3):217-229.
    [23]KOH P T L,HAO F P,SMITH L K,et al.The effect of particle shape and hydrophobicity in flotation[J].International Journal of Mineral Processing,2009,93(2):128-134.
    [24]廖寅飞.浮选气体弥散及其调控研究[D].徐州:中国矿业大学化工学院,2014:59-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700