用户名: 密码: 验证码:
基于不同模型的河口区产养殖塘-气界面CH_4气体传输速率及扩散通量研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Estimate of gas transfer velocity and diffusion flux of CH_4 across water-air interface from aquaculture ponds in subtropical estuaries based on different model methods
  • 作者:杨平 ; 张逸飞 ; 金宝石 ; 谭立山 ; 仝川
  • 英文作者:YANG Ping;ZHANG Yifei;JIN Baoshi;TANG Lishan;TONG Chuan;Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education;School of Geographical Sciences,Fujian Normal University;Research Centre of Wetlands in Subtropical Region,Fujian Normal University;
  • 关键词:甲烷 ; 气体传输速率 ; 扩散通量 ; 环境因素 ; 产养殖塘 ; 亚热带河口
  • 英文关键词:Methane(CH4);;gas transfer velocity;;diffusion flux;;environmental factor;;aquaculture ponds;;subtropical estuary
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:湿润亚热带生态-地理过程教育部重点实验室;福建师范大学地理科学学院;福建师范大学亚热带湿地研究中心;
  • 出版日期:2019-01-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金项目(41801070,41671088,41371127);; 福建师范大学亚热带河口生物地球化学创新团队项目(IRTL1205)联合资助
  • 语种:中文;
  • 页:FLKX201901025
  • 页数:14
  • CN:01
  • ISSN:32-1331/P
  • 分类号:270-283
摘要
模型估算法是-气界面甲烷(CH_4)通量监测的主要方法.本研究选择6种不同的参数化模型方法估算了2015年6、8和10月两个亚热带河口养殖塘-气界面CH_4传输速率(kx)及其扩散通量,探讨了河口养殖塘kx及CH_4扩散通量的变化特征和影响因子.结果表明:研究期间,不同模型估算下的kx及其扩散通量均值在闽江河口养殖塘变化范围分别为1.60±0.75~6.29±1.30 cm/h和9.19±2.67~30.64±6.28μmol/(m2·h),在九龙江河口养殖塘的变化范围分别为0.89±0.19~6.07±0.61 cm/h和3.18±0.48~21.03±2.13μmol/(m2·h); kx及其扩散通量在两个河口区均呈现随时间推移而升高的特征;整个养殖期间,养殖塘-气界面平均CH_4传输速率kx呈现闽江河口略高于九龙江河口(P>0.05),但-气界面平均CH_4扩散通量呈现闽江河口显著高于九龙江河口的特征(P<0.05);风速、体溶解CH_4浓度和盐度是调控河口区养殖塘-气界面CH_4扩散通量变化的重要因子;不同模型估算出的河口养殖塘-气界面CH_4传输速率kx存在差异,表明模型估算法获得的-气界面CH_4扩散通量存在一定的不确定性.
        Diffusion model methods are frequently applied in monitoring water-atmosphere methane( CH_4) fluxes. To explore the variation character and influence factors of CH_4 transfer velocity( kx) and diffusive fluxes across the water-atmosphere interface from aquaculture shrimp ponds,this study chooses six different model methods for estimating kxand CH_4 diffusive fluxes in the Min River estuary( MRE) and Jiulong River estuary( JRE) on the southeast coast of China. For each estuary,water samples were collected using a hydrophore sampler from three shrimp ponds in June,August,and October 2015,respectively. Meanwhile,meteorological parameter( air temperature,wind speed and atmospheric pressure) and water-quality indicators( water temperature,pH,dissolved oxygen and salinity) were measured in situ using a portable instrument. A headspace equilibration technique was used for the measurement of dissolved CH_4 concentration. The mean kxat MRE and JRE ponds during the study period ranged between1.60±0.75 and 6.29±1.30 cm/h,and 0.89±0.19 and 6.07± 0.61 cm/h,respectively. The mean CH_4 diffusive fluxes in the MRE and JRE ponds over the study period ranged between 9.19±2.67 and 30.64±6.28 μmol/( m~2·h),and 3.18±0.48 and 21.03±2.13μmol/( m~2·h),respectively. The results showed that kxand CH_4 diffusive fluxes across the water-atmosphere interface from the estuaries of shrimp ponds greatly varied in spatial and seasonal dynamics. The CH4 diffusive fluxes were significantly higher from the shrimp ponds in the Min River estuary than in the Jiulong River estuary( P<0.05). Average seasonal kx( or CH4 diffusive fluxes) in MRE and JRE shows an increasing trend over time. The wind speed,water dissolved CH4 concentration and salinity are important factors that drive the changes in CH4 diffusive fluxes emission. There are differences in CH4 transfer velocity across the water-atmosphere interface from aquaculture shrimp ponds between the different model methods,indicating that the CH4 diffusive fluxes from the model-based estimation has a certain degree of uncertainty.
引文
[1]Myhre G,Shindell D,Bréon FM et al.Anthropogenic and Natural Radiative Forcing∥Stocker T,Qin D,Plattner GK et al eds.Climate change 2013:The physical science basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press.
    [2]World Meteorological Organization.WMO Greenhouse Gas Bulletin No.12,2016.https://library.wmo.int/opac/doc_num.php?explnum_id=3084.pdf.
    [3]Bastviken D,Tranvik LJ,Downing JA et al.Freshwater methane emissions offset the continental carbon sink.Science,2011,331(6013):50.
    [4]Selvam BP,Natchimuthu S,Arunachalam L et al.Methane and carbon dioxide emissions from inland waters in India-implications for large scale greenhouse gas balances.Global Change Biology,2014,20(11):3397-3407.
    [5]Schrier-Uijl AP,Veraart AJ,Leffelaar PA et al.Release of CO2and CH4from lakes and drainage ditches in temperate wetlands.Biogeochemistry,2011,102,265-279.
    [6]Musenze RS,Grinham A,Werner U et al.Assessing the spatial and temporal variability of diffusive methane and nitrous oxide emissions from subtropical freshwater reservoirs.Environmental Science&Technology,2014,48:14499-14507.
    [7]Zhao Y,Zeng Y,Wu BF et al.Review of methods for measuring greenhouse gas flux from the air-water interface of reservoirs.Advances in Water Science,2011,22(1):135-146.[赵炎,曾源,吴炳方等.水气界面温室气体通量监测方法综述.科学进展,2011,22(1):135-146.]
    [8]Yang P,Tong C.Emission paths and measurement methods for greenhouse gas flux from freshwater ecosystems:a review.Acta Ecologica Sinica.2015,35(20):6868-6880.[杨平,仝川.淡水水生生态系统温室气体排放的主要途径及影响因素研究进展.生态学报,2015,35(20):6868-6880.]
    [9]Gao J,Zheng XH,Wang R et al.Preliminary comparison of the static floating chamber and the diffusion model methods for measuring water-atmosphere exchanges of methane and nitrous oxide from inland water bodies.Climatic and Environmental Research,2014,19(3):290-302.[高洁,郑循华,王睿等.漂浮通量箱法和扩散模型法测定内陆体CH4和N2O排放通量的初步比较研究.气候与环境研究,2014,19(3):290-302.]
    [10]Wanninkhof R.Relationship between wind speed and gas exchange over the ocean.Journal of Geophysical Research:O-ceans,1992,97(C5):7373-7382.
    [11]Yao X,Li Z,Guo JS et al.Comparison between closed static chamber method and thin boundary layer method on monitoring air-water CO2diffusion flux.J Lake Sci,2015,27(2):289-296.[姚骁,李哲,郭劲松等.-气界面CO2通量监测的静态箱法与薄边界层模型估算法比较.湖泊科学,2015,27(2):289-296.]
    [12]Vachon D,Prairie YT,Cole JJ.The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange.Limnology and Oceanography,2010,55(4):1723-1732.
    [13]Vachon D,Prairie YT,Smith R.The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes.Canadian Journal of Fisheries and Aquatic Sciences,2013,70(12):1757-1764.
    [14]Holgerson MA,Raymond PA.Large contribution to inland water CO2and CH4emissions from very small ponds.Nature Geoscience,2016,9(3):222-226.
    [15]Cole JJ,Caraco NF.Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6.Limnology and Oceanography,1998,43(4):647-656.
    [16]Wanninkhof R.Relationship between wind speed and gas exchange over the ocean revisited.Limnology and Oceanography:Methods,2014,12(6):351-362.
    [17]Bastviken D,Cole JJ,Pace ML et al.Fates of methane from different lake habitats:Connecting whole-lake budgets and CH4emissions.Journal of Geophysical Research:Biogeosciences,2008,113(G2):G02024.
    [18]Del Sontro T,Boutet L,St-Pierre A et al.Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity.Limnology and Oceanography,2016,61(S1):S62-S77.
    [19]Natchimuthu S,Sundgren I,Glfalk M et al.Spatio-temporal variability of lake CH4fluxes and its influence on annual whole lake emission estimates.Limnology and Oceanography,2016,61(S1):S13-S26.
    [20]Del Sontro T,Kunz MJ,Kempter T et al.Spatial heterogeneity of methane ebullition in a large tropical reservoir.Environmental Science Technology,2011,45(23):9866-9873.
    [21]Zhao JY,Zhang N,Xiao W et al.Greenhouse gas fluxes at water-air interface in small pond using flux-gradient method based on spectrum analyzer.Environmental Science,2017,38(1):41-51.[赵佳玉,张弥,肖薇等.基于光谱分析仪的通量-梯度法测量小型池塘-气界面温室气体交换通量.环境科学,2017,38(1):41-51.]
    [22]Zheng CH,Zeng CS,Chen ZQ et al.A study on the changes of landscape pattern of estuary wetlands of the Minjiang River.Wetland Science,2006,4(1):29-34.[郑彩虹,曾从盛,陈志强等.闽江河口区湿地景观格局演变研究.湿地科学,2006,4(1):29-34.]
    [23]Wang HT,Yang XR,Zheng TL.Impact of simulated tide and vegetation on the wetland greenhouse gases fluxes.Acta Scientiae Circumstantiae,2013,33(12):3376-3385.[王海涛,杨小茹,郑天凌.模拟潮汐和植被对湿地温室气体通量的影响研究.环境科学学报,2013,33(12):3376-3385.]
    [24]Alongi DM,Pfitzner J,Trott LA et al.Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary,China.Estuarine,Coastal and Shelf Science,2005,63(4):605-618.
    [25]Yang P,Jing BS,Tan LS et al.Spatial-temporal variations of water column dissolved carbon concentrations and dissolved carbon flux at the sediment-water interface in the shrimp ponds from two subtropical estuaries.Acta Ecologica Sinica,2018,38(6):1994-2006.[杨平,金宝石,谭立山等.亚热带河口陆基养虾塘体溶解性碳浓度及沉积物-界面碳通量时空动态特征.生态学报,2018,38(6):1994-2006.]
    [26]Yang P,Tan LS,Jing BS et al.Variation of nutrients and chlorophyll a contents in the shrimp ponds of Jiulong River Estuary and their influencing factors.Wetland Science,2017,15(6):795-801.[杨平,谭立山,金宝石等.九龙江河口区养虾塘体营养盐与叶绿素a含量的变化特征及影响因素.湿地科学,2017,15(6):795-801.]
    [27]Yang P,Lai DYF,Jin BS et al.Dynamics of dissolved nutrients in the aquaculture shrimp ponds of the Min River estuary,China:Concentrations,fluxes and environmental loads.Science of the Total Environment,2017,603/604:256-267.
    [28]Zhang GL,Zhang J,Liu SM et al.Methane in the Changjiang(Yangtze River)Estuary and its adjacent marine area:riverine input,sediment release and atmospheric fluxes.Biogeochemistry,2008,91(1):71-84.
    [29]Wang DQ,Chen ZL,Sun WW et al.Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net.Science in China Series B:Chemistry,2009,52(5):652-661.
    [30]Bastviken D,Santoro AL,Marotta H et al.Methane emissions from Pantanal,South America,during the low water season:toward more comprehensive sampling.Environmental Science&Technology,2010,44(14):5450-5455.
    [31]Demarty M,Bastien J,Tremblay A.Annual follow-up of gross diffusive carbon dioxide and methane emissions from a boreal reservoir and two nearby lakes in Quebec,Canada.Biogeosciences,2011,8:41-53.
    [32]Liss PS,Merlivat L.Air-sea gas exchange rates:introduction and synthesis∥Buat-Menard P ed.In the role of air-sea exchange in geochemical cycling.Reidel:Dordrecht,1986:113-129.
    [33]Mac Intyre S,Wanninkhof R,Chanton JP.Trace gas exchange across the air-water interface in freshwater and coastal marine environments∥Matson PA,Harriss RC eds.Biogenictrace gases:Measuring emissions from soil and water.Cambridge:Blackwell Scientific Publications Ltd,1995:52-97.
    [34]Cole JJ,Caraco NF.Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6.Limnology and Oceanography,1998,43(4):647-656.
    [35]Raymond P,Cole J.Gas exchange in rivers and estuaries:Choosing a gas transfer velocity.Estuaries and Coasts,2001,24(2):312-317.
    [36]Crusius J,Wanninkhof R.Gas transfer velocities measured at low wind speed over a lake.Limnology and Oceanography,2003,48(3):1010-1017.
    [37]Wanninkhof R.Relationship between wind speed and gas exchange over the ocean revisited.Limnology and Oceanography:Methods,2014,12(6):351-362.
    [38]Eugster W,Kling G,Jonas T et al.CO2exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake:Importance of convective mixing.Journal of Geophysical Research,2003,108(D12):4362.DOI:10.1029/2002JD002653.
    [39]Rutgersson A,Smedman A.Enhanced air-sea CO2transfer due to water-side convection.Journal of Marine Systems,2010,80(1/2):125-134.
    [40]Read JS,Hamilton DP,Desai AR et al.Lake-size dependency of wind shear and convection as controls on gas exchange.Journal of Geophysical Research,2012,39:L09405.DOI:10.1029/2012GL051886.
    [41]Smith JM,Green SJ,Kelley CA et al.Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbialmat.Environmental Microbiology,2008,10(2):386-394.
    [42]Chambers LG,Osborne TZ,Reddy KR.Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient:a laboratory experiment.Biogeochemistry,2013,115(1/2/3):363-383.
    [43]Hu MJ,Ren HC,Li JB et al.Response of gaseous carbon emissions to low-level salinity increase in tidal marsh ecosystem of the Min River estuary,southeastern China.Journal of Environmental Sciences,2017,52:210-222.
    [44]Howarth RW.The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments.Biogeochemistry,1984,1(1):5-27.
    [45]Hugo A,Peter M,Reiner W et al.Sulfate-containing amendments to reduce methane emissions from rice fields:mechanisms,effectiveness and costs.Mitigation and Adaptation Strategies for Global Change,2001,6(1):71-89.
    [46]Huang JF,Ni JZ,Tong C et al.Methane production and inhibition via sulfate reduction in a brackish marsh of the Min River Estuary.Acta Scientiae Circumstantiae,2015,35(3):862-872.[黄佳芳,倪进治,仝川等.闽江口半咸沼泽湿地土壤甲烷产生过程及硫酸盐还原对其抑制作用研究.环境科学学报,2015,35(3):862-872.]
    [47]Segers R.Methane production and methane consumption:a review of processes underlying wetland methane fluxes.Biogeochemistry,1998,41(1):23-51.
    [48]Chen Y,Dong SL,Wang F et al.Carbon dioxide and methane fluxes from feeding and no-feeding mariculture ponds.Environmental Pollution,2016,212:489-497.
    [49]Chidthaisong A,Conrad R.Turnover of glucose and acetat ecoupled to reduction of nitrate,ferreiron and sulfate and to methanogenesis in anoxie ricefield soil.FEMS Microbiology Ecology,2000,31:73-76.
    [50]Zeng CS,Wang WQ,Tong C et al.Effects of different exogenous electron acceptors and salt import on methane production potential of estuarine marsh soil.Geographical Research,2008,27(6):1321-1330.[曾从盛,王维奇,仝川等.不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响.地理研究,2008,27(6):1321-1330.]
    [51]Kiene RP.Production and consumption of methane in aquatic systems∥Rogers JE,Whitman WB eds.Microbial production and consumption of greenhouse gases:Methane,nitrogen oxides and halomethanes.Washington DC:American Society for Microbiology,1991:111-146.
    [52]Huttunen JT,Visnen TS,Hellsten SK et al.Fluxes of CH4,CO2,and N2O in hydroelectric Reservoirs Lokka and Porttipahta in the northern boreal zone in Finland.Global Biogeochemical Cycles,2002,16(1):1-17.
    [53]Long L,Xiao SB,Zhang C et al.Characteristics of methane flux across the water-air interface in subtropical shallow ponds.Environmental Science,2016,37(12):4552-4559.[龙丽,肖尚斌,张成等.亚热带浅池塘-气界面甲烷通量特征.环境科学,2016,37(12):4552-4559.]
    [54]Zappa CJ,Mcgillis WR,Raymond PA et al.Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems.Geophysical Research Letters,2007,34:L10601.
    [55]Amouroux D,Roberts G,Rapsomanikis S et al.Biogenic gas(CH4,N2O,DMS)emission to the atmosphere from nearshore and shelf waters of the north-western Black Sea.Estuarine,Coastal and Shelf Science,2002,54(3):575-587.
    [56]Xiao QT,Zhang M,Hu ZH et al.Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate.Journal of Geophysical Research:Biogeosciences,2017,122(7):1597-1614.DOI:10.1002/2017JG003805.
    [57]Li JH,Pu JB,Sun PA et al.Summer greenhouse gases exchange flux across water-air interface in three water reservoirs located in different geologic setting in Guangxi,China.Environmental Science,2015,36(11):4032-4042.[李建鸿,蒲俊兵,孙平安等.不同地质背景库区夏季-气界面温室气体交换通量研究.环境科学,2015,36(11):4032-4042.]
    [58]Anderson DE,Striegl RG,Stannard DI et al.Estimating lake-atmosphere CO2exchange.Limnology and Oceanography,1999,44(4):988-1001.
    [59]Dugan HA,Woolway RI,Santoso AB et al.Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes.Inland Waters,2016,6(4):581-592.
    [60]Mac Intyre S,Jonsson A,Jansson M et al.Buoyancy flux,turbulence,and the gas transfer coefficient in a stratified lake.Geophysical Research Letters,2010,37(24):L24604.DOI:10.1029/2010GL044164.
    [61]Podgrajsek E,Sahlée E,Rutgersson A.Diel cycle of lake-air CO2flux from a shallow lake and the impact of waterside convection on the transfer velocity.Journal of Geophysical Research:Biogeosciences,2015,120(1):29-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700