用户名: 密码: 验证码:
基于TBL模型的闽江口围垦养虾塘-大气界面CO_2扩散通量估算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Diffusive CO_2 Flux Across the Water-air Interface of Reclaimed Shrimp Ponds in the Minjiang River Estuary Based on the TBL Model
  • 作者:张逸飞 ; 杨平 ; 赵光辉 ; 李玲 ; 谭立山 ; 仝川
  • 英文作者:ZHANG Yi-fei;YANG Ping;ZHAO Guang-hui;LI Ling;TAN Li-shan;TONG Chuan;School of Geographical Sciences,Fujian Normal University;Research Centre of Wetlands in Subtropical Region,Fujian Normal University;Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education;
  • 关键词:闽江河口 ; 养虾塘 ; 二氧化碳 ; 扩散通量 ; 气体交换速率 ; 模型
  • 英文关键词:Minjiang River Estuary;;shrimp pond;;carbon dioxide;;diffusive flux;;gas exchange rate;;model
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:福建师范大学地理科学学院;福建师范大学亚热带湿地研究中心;湿润亚热带生态地理过程教育部重点实验室;
  • 出版日期:2018-10-15 16:46
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(41801070,41671088);; 福建师范大学研究生科研创新基金项目(20160768)
  • 语种:中文;
  • 页:HJKZ201903019
  • 页数:10
  • CN:03
  • ISSN:11-1895/X
  • 分类号:180-189
摘要
扩散模型是估算生生态系统-大气界面二氧化碳(CO_2)交换通量的重要手段.选取多种参数化方法对闽江口围垦养虾塘-大气界面CO_2气体交换速率(k_x)及CO_2扩散通量进行估算,探讨闽江口围垦养虾塘k_x及CO_2扩散通量的变化特征及影响因素.结果表明:①养殖期-大气界面CO_2气体交换速率及其扩散通量均呈现显著的时间变化特征,分别表现为10月> 9月> 11月> 7月> 8月和11月> 7月> 8月> 9月> 10月的变化趋势;②风速、pH、体CO_2、DOC和叶绿素a(Chl-a)浓度是影响CO_2扩散通量时间变化特征的重要因素;③不同参数化方法计算得出的闽江口养虾塘-大气界面CO_2扩散通量存在显著差异(P <0. 01),表明模型方法估算养殖塘CO_2扩散通量具有一定不确定性,综合分析认为模型RC01和CW03是估算闽江口围垦养虾塘-大气界面CO_2扩散通量较为合适的方法.
        Freshwater aquatic ecosystems are important sources of greenhouse gases,such as CO_2. However,few studies have presented data on the greenhouse gas flux from coastal aquaculture ponds. Diffusion models are important tools for estimating the CO_2 exchange flux across the water-air interface of aquatic ecosystems. Several different parameterized means were selected to estimate the CO_2 gas exchange rate( k_x) and CO_2 diffusive flux across the water-air interface of shrimp ponds in the Minjiang River Estuary. The results indicated that: ① the CO_2 gas exchange rate and diffusive flux over the culture period all presented significant temporal variation. This variation showed a dynamic trend: October > September > November > July > August and November > July > August >September > October. ② Wind speed,k_x,CO_2 concentration,pH,DOC concentration,and Chl-a concentration were important factors affecting the temporal variation of CO_2 diffusive flux. ③ There were differences in the estimated value of CO_2 diffusive flux across the water-air interface of the culture ponds in the Minjiang River Estuary among different parameterized approaches( P < 0. 01). This indicates that the model method has some uncertainties in estimating the CO_2 diffusive flux in culture ponds. Our results suggest that the models RC01 and CW03 are more suitable methods for estimating the CO_2 diffusive flux at the water-air interface of estuarine reclaimed aquaculture ponds in the Minjiang River Estuary,after comprehensive analysis of the water environment and the different estimation results.
引文
[1]Yang P,He Q H,Huang J F,et al.Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China[J].Atmospheric Environment,2015,115:269-277.
    [2]Chen Y,Dong S L,Wang Z N,et al.Variations in CO2fluxes from grass carp Ctenopharyngodon idella aquaculture polyculture ponds[J].Aquaculture Environment Interactions,2015,8:31-40.
    [3]Demarty M,Bastien J,Tremblay A.Annual follow-up of gross diffusive carbon dioxide and methane emissions from a boreal reservoir and two nearby lakes in Québec,Canada[J].Biogeosciences,2011,8(1):41-53.
    [4]Musenze R S,Grinham A,Werner U,et al.Assessing the spatial and temporal variability of diffusive methane and nitrous oxide emissions from subtropical freshwater reservoirs[J].Environmental Science&Technology,2014,48(24):14499-14507.
    [5]Tangen B A,Finocchiaro R G,Gleason R A,et al.Greenhouse gas fluxes of a shallow lake in South-Central North Dakota,USA[J].Wetlands,2016,36(4):779-787.
    [6]Natchimuthu S,Selvam B P,Bastviken D.Influence of weather variables on methane and carbon dioxide flux from a shallow pond[J].Biogeochemistry,2014,119(1-3):403-413.
    [7]Bastviken D,Tranvik L J,Downing J A,et al.Freshwater methane emissions offset the continental carbon sink[J].Science,2011,331(6013):50.
    [8]Downing J A.Emerging global role of small lakes and ponds:little things mean a lot[J].Limnetica,2010,29(1):9-24.
    [9]李昌辉.-气界面温室气体扩散的薄边界层模型研究与应用[D].重庆:重庆交通大学,2017.Li C H.Research and application of thin boundary layer model on greenhouse gas transfer through air-water interface[D].Chongqing:Chongqing Jiaotong University,2017.
    [10]赵炎,曾源,吴炳方,等.水气界面温室气体通量监测方法综述[J].科学进展,2011,22(1):135-146.Zhao Y,Zeng Y,Wu B F,et al.Review of methods for measuring greenhouse gas flux from the air-water interface of reservoirs[J].Advances in Water Science,2011,22(1):135-146.
    [11]赫斌,李哲,姚骁,等.三峡澎溪河-气界面温室气体模型估算及其敏感性分析[J].湖泊科学,2017,29(3):705-712.He B,Li Z,Yao X,et al.The model estimation and sensitivity analysis of greenhouse gas on water-air interface in Pengxi River,Three Gorges Reservoir[J].Journal of Lake Sciences,2017,29(3):705-712.
    [12]Atilla N,Mc Kinley G A,Bennington V,et al.Observed variability of Lake Superior pCO2[J].Limnology and Oceanography,2011,56(3):775-786.
    [13]Urabe J,Iwata T,Yagami Y,et al.Within-lake and watershed determinants of carbon dioxide in surface water:a comparative analysis of a variety of lakes in the Japanese Islands[J].Limnology and Oceanography,2011,56(1):49-60.
    [14]Ho D T,Ferrón S,Engel V C,et al.Air-water gas exchange and CO2flux in a mangrove-dominated estuary[J].Geophysical research Letters,2014,41(1):108-113.
    [15]Wang B B,Liao Q,Fillingham J H,et al.On the coefficients of small eddy and surface divergence models for the air-water gas transfer velocity[J].Journal of Geophysical Research,2015,120(3):2129-2146.
    [16]杨平,谭立山,黄佳芳,等.初冬时期闽江河口区养殖塘排后的CH4和N2O通量日变化特征[J].环境科学,2018,39(1):300-309.Yang P,Tan L S,Huang J F,et al.Diurnal variations of CH4and N2O fluxes from the drained aquaculture pond in the Minjiang River Estuary during early winter[J].Environmental Science,2018,39(1):300-309.
    [17]Raymond P A,Hartmann J,Lauerwald R,et al.Global carbon dioxide emissions from inland waters[J].Nature,2013,503(7476):355-359.
    [18]张逸飞,刘小慧,杨平,等.模拟SO2-4沉降对闽江口淡感潮野慈姑湿地甲烷排放通量的影响[J].生态学报,2018,38(13):4715-4723.Zhang Y F,Liu X H,Yang P,et al.Effects of simulated sulfate deposition on methane flux from a Sagittaria trifolia-dominated freshwater tidal wetland in the Min River Estuary[J].Acta Ecologica Sinica,2018,38(13):4715-4723.
    [19]Yang P,Zhang Y F,Lai D Y F,et al.Fluxes of carbon dioxide and methane across the water-atmosphere interface of aquaculture shrimp ponds in two subtropical estuaries:The effect of temperature,substrate,salinity and nitrate[J].Science of the Total Environment,2018,635:1025-1035.
    [20]Tong C,Huang J F,Hu Z Q,et al.Diurnal variations of carbon dioxide,methane,and nitrous oxide vertical fluxes in a subtropical estuarine marsh on neap and spring tide days[J].Estuaries and Coasts,2013,36(3):633-642.
    [21]Yang P,Lai D Y F,Jin B S,et al.Dynamics of dissolved nutrients in the aquaculture shrimp ponds of the Min River estuary,China:Concentrations,fluxes and environmental loads[J].Science of the Total Environment,2017,603-604:256-267.
    [22]谭立山,杨平,何露露,等.闽江口短叶茳芏+芦苇沼泽湿地大、小潮日土壤间隙溶解性CH4与CO2浓度日动态[J].环境科学,2017,38(1):52-59.Tan L S,Yang P,He L L,et al.Diurnal variations of concentration of porewater dissolved CH4and CO2in a brackish marsh dominated by Cyperus malaccensis and Phragmites australis during neap and spring tidal days in the Minjiang River Estuary[J].Environmental Science,2017,38(1):52-59.
    [23]Selvam B P,Natchimuthu S,Arunachalam L,et al.Methane and carbon dioxide emissions from inland waters in Indiaimplications for large scale greenhouse gas balances[J].Global Change Biology,2014,20(11):3397-3407.
    [24]Guérin F,Abril G,Ser9a D,et al.Gas transfer velocities of CO2and CH4in a tropical reservoir and its river downstream[J].Journal of Marine Systems,2007,66(1-4):161-172.
    [25]Tremblay A,Varfalvy L,Roehm C,et al.Greenhouse gas emissions-fluxes and processes:hydroelectric reservoirs and natural environments[M].Berlin Heidelberg:Springer,2005.725-732.
    [26]Liss P S,Merlivat L.Air-Sea gas exchange rates:introduction and synthesis[A].In:Buat-Ménard P(Ed.).The Role of AirSea Exchange in Geochemical Cycling[M].Dordrecht:Springer,1986.113-127.
    [27]Wanninkhof R.Relationship between wind speed and gas exchange over the ocean[J].Journal of Geophysical Research,1992,97(C5):7373-7382.
    [28]Mac Intyre S,Wanninkhof R,Chanton J P.Trace gas exchange across the air-water interface in freshwater and coastal marine environments[A].In:Matson P A,Harris R C(Eds.).Biogenic Trace Gases:Measuring Emissions from Soil and Water[M].Oxford:Blackwell Science,1995.52-97.
    [29]Cole J J,Caraco N F.Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6[J].Limnology and Oceanography,1998,43(4):647-656.
    [30]Raymond P A,Cole J J.Gas exchange in rivers and estuaries:Choosing a gas transfer velocity[J].Estuaries,2001,24(2):312-317.
    [31]Crusius J,Wanninkhof R.Gas transfer velocities measured at low wind speed over a lake[J].Limnology and Oceanography,2003,48(3):1010-1017.
    [32]Jhne B,Libner P,Fischer R,et al.Investigating the transfer processes across the free aqueous viscous boundary layer by the controlled flux method[J].Tellus B:Chemical and Physical Meteorology,1989,41(2):177-195.
    [33]Singh S,Bhatti T S,Kothari D P.Wind power estimation using artificial neural network[J].Journal of Energy Engineering,2007,133(1):46-52.
    [34]肖启涛,张弥,胡正华,等.基于不同模型的大型湖泊水气界面气体传输速率估算[J].湖泊科学,2018,30(3):790-801.Xiao Q T,Zhang M,Hu Z H,et al.Estimate of gas transfer velocity between water-air interface in a large lake based on different models:a case study of lake taihu[J].Journal of Lake Sciences,2018,30(3):790-801.
    [35]Read J S,Hamilton D P,Desai A R,et al.Lake-size dependency of wind shear and convection as controls on gas exchange[J].Geophysical Research Letters,2012,39(9):L09405.
    [36]Crill P M,Bartlett K B,Wilson J O,et al.Tropospheric methane from an Amazonian floodplain lake[J].Journal of Geophysical Research,1988,93(D2):1564-1570.
    [37]张成,吕新彪,龙丽,等.极低风速条件下-气界面甲烷气体传输速率分析[J].环境科学,2016,37(11):4162-4167.Zhang C,LüX B,Long L,et al.Gas transfer velocity of CH4at extremely low wind speeds[J].Environmental Science,2016,37(11):4162-4167.
    [38]杨平,仝川.淡水水生生态系统温室气体排放的主要途径及影响因素研究进展[J].生态学报,2015,35(20):6868-6880.Yang P,Tong C.Emission paths and measurement methods for greenhouse gas fluxes from freshwater ecosystems:a review[J].Acta Ecologica Sinica,2015,35(20):6868-6880.
    [39]Schrier-Uijl A P,Veraart A J,Leffelaar P A,et al.Release of CO2and CH4from lakes and drainage ditches in temperate wetlands[J].Biogeochemistry,2011,102(1-3):265-279.
    [40]Bartosiewicz M,Laurion I,Macintyre S.Greenhouse gas emission and storage in a small shallow lake[J].Hydrobiologia,2015,757(1):101-115.
    [41]Zappa C J,Mc Gillis W R,Raymond P A,et al.Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems[J].Geophysical Research Letters,2007,34(10):L10601.
    [42]Mac Intyre S,Jonsson A,Jansson M,et al.Buoyancy flux,turbulence,and the gas transfer coefficient in a stratified lake[J].Geophysical Research Letters,2010,37(24):L24604.
    [43]高洁,郑循华,王睿,等.漂浮通量箱法和扩散模型法测定内陆体CH4和N2O排放通量的初步比较研究[J].气候与环境研究,2014,19(3):290-302.Gao J,Zheng X H,Wang R,et al.Preliminary comparison of the static floating chamber and the diffusion model methods for measuring water-atmosphere exchanges of methane and nitrous oxide from inland water bodies[J].Climatic and Environmental Research,2014,19(3):290-302.
    [44]张永领,杨小林,张东.小浪底库影响下的黄河花园口站和小浪底站p CO2特征及扩散通量[J].环境科学,2015,36(1):40-48.Zhang Y L,Yang X L,Zhang D.Partial Pressure of CO2and CO2Degassing Fluxes of Huayuankou and Xiaolangdi Station Affected by Xiaolangdi Reservoir[J].Environmental Science,2015,36(1):40-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700