用户名: 密码: 验证码:
Pd/C催化剂的表面性质对1,8-二硝基萘加氢反应的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The effect of surface properties of Pd/C catalyst on 1,8-dinitronaphthalene hydrogenation reaction
  • 作者:夏海岸 ; 孙国瀚 ; 安佳欢 ; 胡红 ; 左宋林
  • 英文作者:XIA Haian;SUN Guohan;AN Jiahuan;HU Hong;ZUO Songlin;Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass,College of Chemical Engineering,Nanjing Forestry University;
  • 关键词:Pd/C催化剂 ; 钯纳米颗粒 ; 1 ; 8-二硝基萘 ; 加氢
  • 英文关键词:Pd/C catalyst;;Pd nanoparticles;;1,8-dinitronaphthalene;;hydrogenation
  • 中文刊名:LKKF
  • 英文刊名:Journal of Forestry Engineering
  • 机构:南京林业大学化学工程学院江苏省农林生物质化学及利用国家重点实验室;
  • 出版日期:2019-05-25
  • 出版单位:林业工程学报
  • 年:2019
  • 期:v.4;No.21
  • 基金:国家重点研发计划(2017YD0601006);; 江苏省自然科学基金面上项目(BK20171452)
  • 语种:中文;
  • 页:LKKF201903011
  • 页数:8
  • CN:03
  • ISSN:32-1862/S
  • 分类号:72-79
摘要
1,8-二氨基萘(1,8-DAN)是一种重要的精细化工中间体,其在染料、医药中间体和感光材料等行业有着广泛的应用。目前,主要采用化学还原剂还原的方法来合成,此工艺具有产生废渣、原子经济性低等缺点。因此,发展一种绿色环保的催化加氢方法具有重要意义。笔者以具有不同Pd纳米平均粒径的Pd/C为催化剂,通过1,8-二硝基萘催化加氢制备,考察了Pd纳米粒子尺寸对1,8-二硝基萘(1,8-DNN)加氢性能的影响,探索了催化剂表面结构与催化性能的关系。首先,以椰壳炭化料为原料,经水蒸气活化法制备出孔隙发达的载体活性炭,通过不同的还原方法制备出具有不同粒径的Pd/C催化剂,以1,8-DNN的加氢反应来评价其催化性能。应用X-射线衍射(XRD)、透射电镜(TEM)、X-射线光电子能谱(XPS)、N_2吸附等手段对催化剂表面性质进行表征。结果表明:在一定粒径范围内,钯纳米颗粒的尺寸越小,催化剂的活性越高,1,8-DAN的产率和选择性越高。氢气还原使得钯纳米颗粒严重团聚,而使用甲酸和NaBH_4还原的Pd/C催化剂,Pd纳米颗粒分散性较好,并且具有良好的均一性。使用NaBH_4还原的Pd/C催化剂催化1,8-DNN加氢制备1,8-DAN的转化率和产率可分别达到100%和99%,其催化性能高于商业化的Pd/C催化剂。循环回收实验结果表明,Pd/C催化剂在回收反应过程中十分稳定,连续循环5次,活性并没有明显降低。
        1,8-diaminonaphthalene( 1,8-DAN) is an important chemical raw material,which has been widely used in the industrial production of fine chemicals,especially in dye,pharmaceutical intermediates and photosensitive materials.At present,1,8-DAN is mainly synthesized through chemical reduction of 1,8-dinitronaphthalene( 1,8-DNN) using iron or zinc,etc,as the catalyst. The process would produce many solid wastes and has low atomic economy.Therefore,it is of great significance to develop an environmentally friendly hydrogenation process to synthesize 1,8-DNN. In this work,we firstly prepared activated carbon support by steaming activation of coconut shell carbon followed by loading Pd nanoparticles by impregnation method. The physiochemical properties of these catalysts were characterized by X-ray diffraction( XRD),transmission electron microscopy( TEM),X-ray photoelectron spectroscopy( XPS),N2 adsorption,etc. The catalytic performances were evaluated through the catalytic hydrogenation of1,8-DNN to 1,8-DAN. The effect of reduction methods on the mean particle size of Pd and shape of Pd/C was investigated,and the relationship between Pd particle size,shape,and surface properties of these catalysts and their catalytic performances was also examined. The results showed that the reduction method has a significant impact on the Pd particle size. The use of H2 readily resulted in severe agglomeration of Pd nanoparticle,whereas the use of HCOOH and NaBH_4 could afford a small Pd nanoparticle with uniform size distribution. The smaller the size of the palladium nanoparticles,the higher the yield and selectivity of 1,8-DAN was obtained within a certain particle size range. The order for their hydrogenation activity of 1,8-DNN increased as follows: 5%Pd/C-NaBH_4,1%Pd/C-NaBH4,1%Pd/C-HCOOH,1%Pd/C-H_2. In addition,it was found that besides the Pd average size and the surface oxygenated groups have a remarkable effect on the catalytic performances. Pd/C obtained by the reduction of NaBH_4 has more hydroxyl groups,which has effectively promoted its hydrogenation activity. The conversion of 1,8-DNN and yield of 1,8-DAN were 100% and 99%,respectively,could be achieved under mild reaction conditions. N_2 adsorption results indicated that the surface area,pore volume,and pore size of the catalyst all decreased after the loading of Pd nanoparticles,suggesting that Pd nanopraticles could introduce to the pore or occupy the pore mouth. The results of catalyst recycle experiment demonstrated that the catalyst remained stable without significant loss of its catalytic activity after five successive cycles. This work will provide some new insights into catalyst design for the hydrogenation reaction of 1,8-DNN into 1,8-DAN at a large scale.
引文
[1]LU X H,WEI X L,ZHOU D,et al.Synthesis,structure and catalytic activity of the supported Ni catalysts for highly efficient one-step hydrogenation of 1,5-dinitronaphthalene to 1,5-diaminodecahydronaphthalene[J].Journal of Molecular Catalysis AChemical,2015,396:196-206.DOI:10.1016/j.molcata.2014.08.030.
    [2]XIONG W,WANG K J,LIU X W,et al.1,5-Dinitronaphthalene hydrogenation to 1,5-diaminonaphthalene over carbon nanotube supported non-noble metal catalysts under mild conditions[J].Applied Catalysis A-General,2016,514:126-134.DOI:10.1016/j.apcata.2016.01.018.
    [3]刘贤响,杨拥军,尹笃林,等.常压条件下Pd/C催化邻氯硝基苯加氢反应[J].化工进展,2016,35(2):524-527.DOI:10.16085/j.issn.1000-6613.2016.02.027.LIU X X,YANG Y J,YIN D L,et al.Hydrogenation performance of o-chloronitrobenzene over Pd/C under atmospheric pressure[J].Chemistry Industry and Engineering Progess,2016,35(2):524-527.
    [4]蒋柱武,廖微,刘涛.3种氧化铁矿物/亚铁体系还原转化芳香硝基化合物的比较[J].环境工程学报,2016,10(8):4266-4270.DOI:10.12030/j.cjee.201503193.JIANG Z W,LIAO W,LIU T,Comparison of reduction capability of nitroaromatic compounds by three iron oxides bound Fe(Ⅱ)systems[J].Chinese Journal of Environmental Engineering,2016,10(8):4266-4270.
    [5]CHEN T L,LI D Q,JIANG H,et al.High-performance Pd nanoalloy on functionalized activated carbon for the hydrogenation of nitroaromatic compounds[J].Chemical Engineering Journal,2014,259:161-169.DOI:10.1016/j.cej.2014.07.054.
    [6]QU Y M,CHEN T,WANG G Y,Hydrogenation of nitrobenzene catalyzed by Pd promoted Ni supported on C-60 derivative[J].Applied Surface Science,2019,465:888-894.DOI:10.1016/j.apsusc.2018.08.199.
    [7]BARONE G,DUCA D.Hydrogenation of 2,4-dinitro-toluene on Pd/C catalysts:computational study on the influence of the molecular adsorption modes and of steric hindrance and metal dispersion on the reaction mechanism[J].Journal of Catalysis,2002,211(2):296-307.DOI:10.1006/jcat.2002.3752.
    [8]ABIRAJ K,SRINIVASA G R,GOWDA D C.Transfer hydrogenation of aromatic nitro compounds using polymer-supported formate and Pd-C[J].Synthetic Communications,2005,35(2):223-230.DOI:10.1081/SCC-200048429.
    [9]DU R,ZHU C,ZHANG P,et al.Selective hydrogenation of aromatic aminoketones by Pd/C catalysis[J].Synthetic Communications,2008,38(17):2889-2897.DOI:10.1080/00397910801993719.
    [10]VILCHES-HERRERA M,WERKMEISTER S,JUNGE K,et al.Selective catalytic transfer hydrogenation of nitriles to primary amines using Pd/C[J].Catalysis Science&Technology,2014,4(3):629-632.DOI:10.1039/C3CY00854A.
    [11]XIONG W,WANG L,CAI G,et al.Nitrogen-functionalized active carbon-supported non-noble nickel nanoparticles with high dispersity and enhanced catalytic performance in nitro naphthalene hydrogenation[J].Chemistry Select,2017,2(34):11244-11249.DOI:10.1002/slct.201702093.
    [12]XU S Q,YAN X P,BU Q,et al.Catalytic conversion of celluloseinto polyols using carbon-nanotube-supported monometallic Pd and bimetallic Pd-Fe catalysts[J].Cellulose,2017,24:2403-2413.DOI:10.1007/s10570-017-1275-0.
    [13]DUAN X L,YUAN C G,JING T T,et al.Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation[J].Fuel,2019,239:830-840.DOI:10.1016/j.fuel.2018.11.017.
    [14]YUMARK T,BRAGG D,SABOLSKY E M.Effect of synthesis methods on the surface and electrochemical characteristics of metal oxide/activated carbon composites for supercapacitor applications[J].Applied Surface Science,2019,469:983-993.DOI:10.1016/j.apsusc.2018.09.079.
    [15]FANG R M,HUANG W J,HUANG H B,et al.Efficient MnOx/SiO2@AC catalyst for ozone-catalytic oxidation of gaseous benzene at ambient temperature[J].Applied Surface Science,2019,470:439-447.DOI:10.1016/j.apsusc.2018.11.146.
    [16]章磊,安佳欢,徐思泉,等.油茶壳原料制备木糖和高品质活性炭的研究[J].林业工程学报,2018,3(4):81-86.DOI:10.13360/j.issn.2096-1359.2018.04.014.ZHANG L,AN J H,XU S Q,et al.Preparation of activated carbon and xylose using Camellia oleifera shell as a feedstock[J].Journal of Forestry Engineering,2018,3(4):81-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700