用户名: 密码: 验证码:
巢湖十五里河河床地貌单元沉积物硝化速率及污染特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nitrification Rates and Pollution Characteristics of Sediments with Different Geomorphic Features in the Shiwuli Stream,Chaohu Lake Basin
  • 作者:李如忠 ; 阙凤翔 ; 熊鸿斌 ; 王莉
  • 英文作者:LI Ru-zhong;QUE Feng-xiang;XIONG Hong-bin;WANG Li;School of Resources and Environmental Engineering,Hefei University of Technology;
  • 关键词:地貌单元 ; 沉积物 ; 潜在硝化速率(PNR) ; 表面硝化速率(ANR) ; 巢湖
  • 英文关键词:geomorphic structure;;sediment;;potential nitrification rate(PNR);;areal nitrification rate(ANR);;Chaohu Lake
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:合肥工业大学资源与环境工程学院;
  • 出版日期:2018-08-22 21:20
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51579061)
  • 语种:中文;
  • 页:HJKZ201901025
  • 页数:8
  • CN:01
  • ISSN:11-1895/X
  • 分类号:213-220
摘要
2017年7月~2018年3月,在巢湖流域十五里河城市段河床地貌特征丰富的两处河段,就深潭、浅滩、砾石滩、点砂坝和常规流水区等5种地貌单元类型,按季节采集表层沉积物样和水样,解析不同地貌单元沉积物硝化速率及其变化性,并开展不同地貌单元硝化速率的差异性和影响因素分析.结果表明:(1)十五里河中上游河段氮磷污染严重,且水体氧化还原电位(ORP)值基本都低于零,表明河水处于显著的还原状态.(2)5种地貌单元沉积物的PNR变化范围为0.002~0.079μmol·(g·h)-1,均值为0.023μmol·(g·h)-1,高低排序依次为:深潭>点砂坝>浅滩>砾石滩>流水区,相应的季节变化规律基本表现为:夏季>春季>秋季>冬季.(3)5种地貌单元表层沉积物ANR变幅为0.140~13.543μmol·(m2·h)-1,均值为3.658μmol·(m2·h)-1,总体表现为浅滩最高,常规流水区次之,砾石滩和点砂坝大体相当,深潭最小,且季节变化规律与PNR相似.(4)差异性分析表明,深潭、浅滩与其他4种地貌PNR均存在显著差异性,超过半数的地貌单元ANR呈极显著差异性.(5)回归分析表明,5种地貌单元的PNR、ANR与上覆水水质指标的相关性相对较强,而与沉积物理化指标的相关性略弱.
        Sediment and overlying water samples were collected seasonally from five different geomorphic structures(i.e.,pools,riffles,gravel bars,point bars,and runs) from two urban reaches of the Shiwulihe River in the Chaohu Lake Basin dominated by high ammonia concentration between July 2017 and March 2018.Both the sediment potential and areal nitrification rates were measured and their seasonal and geomorphological variability were evaluated.The specific differences between every two geomorphic structures were determined using the Mann-Whitney U test and the relationship between the overlying water environment or benthic sediments and sediment nitrification was explored based on regression analysis.The results show that:(1) The studied reaches are seriously polluted by nitrogen and phosphorus and most of the oxidation-reduction potential(ORP) values in the overlying water were are below 0 m V,suggesting strong reducing conditions of the water column.(2) The potential nitrification rates(PNRs) across the five geomorphic structures range from 0.002 to 0.079 μmol·(g·h)-1,with a mean value of 0.023 μmol·(g·h)-1.The ranking order of PNRs is pools > point bars > riffles > gravel bars > runs,with a seasonal change pattern of summer > spring > autumn > winter.(3) The areal nitrification rates(ANRs) across the five geomorphic structures range between 0.140 and 13.543 μmol·(m2·h)-1,with an average of3.658 μmol·(m2·h)-1.In general,the highest mean value was observed in riffles,followed by runs,and gravel bars and point bars;the smallest value was observed in pools.In addition,ANRs appear to have seasonal change patterns similar to that of the PNRs.(4)According to the difference analysis,there are significant differences between pools or riffles and other features of the PNRs.Extremely significant ANR differences were observed between more than half of the geomorphic structures.(5) Regression analysis shows a stronger correlation between sediment nitrification and the overlying water environment,compared with the surface sediment properties.
引文
[1]Isnansetyo A,Seguchi M,Koriyama M.Nitrification potential rate of different sediment types of the Ariake Sea tidal flat in Summer and Autumn[J].Research Journal of Environmental and Earth Sciences,2011,3(6):704-716.
    [2]Wang H T,Liao G S,D'Souza M,et al.Temporal and spatial variations of greenhouse gas fluxes from a tidal mangrove wetland in Southeast China[J].Environmental Science and Pollution Research,2016,23(2):1873-1885.
    [3]王若冰,赵钰,单保庆,等.海河流域典型重污染河流滏阳河沉积物氨化和硝化速率研究[J].环境科学学报,2018,38(3):858-866.Wang R B,Zhao Y,Shan B Q,et al.Ammonification and nitrification rates in sediment of typical heavy polluted river(Fuyang River)in the Haihe River Basin[J].Acta Scientiae Circumstantiae,2018,38(3):858-866.
    [4]Pauer J J,Auer M T.Nitrification in the water column and sediment of a hypereutrophic lake and adjoining river system[J].Water Research,2000,34(4):1247-1254.
    [5]牟晓杰,刘兴土,仝川,等.人为干扰对闽江河口湿地土壤硝化-反硝化潜力的影响[J].中国环境科学,2013,33(8):1413-1419.Mou X J,Liu X T,Tong C,et al.Effects of human disturbance on nitrification and denitrification potential in the Min River estuarine wetland[J].China Environmental Science,2013,33(8):1413-1419.
    [6]Yao L,Chen C R,Liu G H,et al.Environmental factors,but not abundance and diversity of nitrifying microorganisms,explain sediment nitrification rates in Yangtze lakes[J].RSC Advances,2018,8(4):1875-1883.
    [7]Bettez N D,Groffman P M.Denitrification potential in stormwater control structures and natural riparian zones in an urban landscape[J].Environmental Science&Technology,2017,46(20):10909-10917.
    [8]Lefebvre S,Marmonier P,Peiry J L.Nitrogen dynamics in rural streams:differences between geomorphologic units[J].Annales de Limnologie-International Journal of Limnology,2006,42(1):43-52.
    [9]Rex J F,Petticrew E L,Albers S J,et al.The influence of Pacific salmon decay products on near‐field streambed sediment and organic matter dynamics:a flume simulation[J].Earth Surface Processes and Landforms,2014,39(10):1378-1385.
    [10]王宏涛,董哲仁,赵进勇,等.蜿蜒型河流地貌异质性及生态学意义研究进展[J].水资源保护,2015,31(6):81-85.Wang H T,Dong Z R,Zhao J Y,et al.Review on geomorphological heterogeneity of meandering river and its ecological significance[J].Water Resources Protection,2015,31(6):81-85.
    [11]Hester E T,Doyle M W.In-stream geomorphic structures as drivers of hyporheic exchange[J].Water Resources Research,2008,44(3):W03417.
    [12]Dong X L,RuhíA,Grimm N B.Evidence for self-organization in determining spatial patterns of stream nutrients,despite primacy of the geomorphic template[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(24):E4744-E4752.
    [13]Tatariw C,Chapman E L,Sponseller R A,et al.Denitrification in a large river:consideration of geomorphic controls on microbial activity and community structure[J].Ecology,2013,94(10):2249-2262.
    [14]李如忠,杨源,丁贵珍,等.基于OTIS模型的巢湖十五里河源头段参数灵敏性分析[J].环境科学研究,2014,27(11):1265-1271.Li R Z,Yang Y,Ding G Z,et al.OTIS model-based parameter sensitivity analysis for headwater stream in the Shiwulihe River,Chaohu Lake Basin[J].Research of Environmental Sciences,2014,27(11):1265-1271.
    [15]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
    [16]王超,单保庆,赵钰.滏阳河水系沉积物硝化速率分布及溶解氧的限制效应[J].环境科学学报,2015,35(6):1735-1740.Wang C,Shan B Q,Zhao Y.Spatial distribution of nitrification rate and the restriction effect of oxygen in the Fuyang River[J].Acta Scientiae Circumstantiae,2015,35(6):1735-1740.
    [17]秦如彬,李如忠,高苏蒂,等.城乡交错带典型溪流沟渠沉积物氮污染特征及硝化-反硝化潜力[J].环境科学,2017,38(3):936-945.Qin R B,Li R Z,Gao S D,et al.Pollution characteristics and nitrification and denitrification potential of superficial sediments from streams in an urban-rural fringe[J].Environmental Science,2017,38(3):936-945.
    [18]Strauss E A,Mitchell N L,Lamberti G A.Factors regulating nitrification in aquatic sediments:Effects of organic carbon,nitrogen availability,and p H[J].Canadian Journal of Fisheries and Aquatic Sciences,2002,59(3):554-563.
    [19]Brady N C,Weil R R.Nitrogen and sulfur economy of soils[A].In:Brady N C,Weil R R.The Nature and Properties of Soils[M].New Jersey:Prentice-Hall,1996.584-642.
    [20]Rissanen A J,Tiirola M,Ojala A.Spatial and temporal variation in denitrification and in the denitrifier community in a boreal lake[J].Aquatic Microbial Ecology,2011,64(1):27-40.
    [21]Kemp M J,Dodds W K.Centimeter-scale patterns in dissolved oxygen and nitrification rates in a prairie stream[J].Journal of the North American Benthological Society,2001,20(3):347-357.
    [22]Cornwell J C,Owens M S.Quantifying sediment nitrogen releases associated with estuarine dredging[J].Aquatic Geochemistry,2011,17(4-5):499-517.
    [23]Belviso S,Thouzeau G,Schmidt S,et al.Significance of vertical flux as a sink for surface water DMSP and as a source for the sediment surface in coastal zones of northern Europe[J].Estuarine,Coastal and Shelf Science,2006,68(3-4):473-488.
    [24]Lin L,Davis L,Cohen S,et al.The influence of geomorphic unit spatial distribution on nitrogen retention and removal in a large river[J].Ecological Modelling,2016,336:26-35.
    [25]刘炎,石小荣,崔益斌,等.高浓度氨氮胁迫对纤细裸藻的毒性效应[J].环境科学,2013,34(11):4386-4391.Liu Y,Shi X R,Cui Y B,et al.Toxic effects of high concentrations of ammonia on Euglena gracilis[J].Environmental Science,2013,34(11):4386-4391.
    [26]Chew S F,Ip Y K.Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes[J].Journal of Fish Biology,2014,84(3):603-638.
    [27]王亚蕊,陈向超,陈丙法,等.藻屑堆积对沉积物-水界面污染物的释放效应[J].环境科学学报,2018,38(1):142-153.Wang Y R,Chen X C,Chen B F,et al.The release of pollutants in sediment-water interface after algal-debris accumulated in sediments[J].Acta Scientiae Circumstantiae,2018,38(1):142-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700